This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pockthg . (Contributed by Mario Carneiro, 2-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pockthg.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℕ ) | |
| pockthg.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℕ ) | ||
| pockthg.3 | ⊢ ( 𝜑 → 𝐵 < 𝐴 ) | ||
| pockthg.4 | ⊢ ( 𝜑 → 𝑁 = ( ( 𝐴 · 𝐵 ) + 1 ) ) | ||
| pockthlem.5 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| pockthlem.6 | ⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) | ||
| pockthlem.7 | ⊢ ( 𝜑 → 𝑄 ∈ ℙ ) | ||
| pockthlem.8 | ⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ∈ ℕ ) | ||
| pockthlem.9 | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | ||
| pockthlem.10 | ⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ) | ||
| pockthlem.11 | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) = 1 ) | ||
| Assertion | pockthlem | ⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ≤ ( 𝑄 pCnt ( 𝑃 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pockthg.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℕ ) | |
| 2 | pockthg.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℕ ) | |
| 3 | pockthg.3 | ⊢ ( 𝜑 → 𝐵 < 𝐴 ) | |
| 4 | pockthg.4 | ⊢ ( 𝜑 → 𝑁 = ( ( 𝐴 · 𝐵 ) + 1 ) ) | |
| 5 | pockthlem.5 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 6 | pockthlem.6 | ⊢ ( 𝜑 → 𝑃 ∥ 𝑁 ) | |
| 7 | pockthlem.7 | ⊢ ( 𝜑 → 𝑄 ∈ ℙ ) | |
| 8 | pockthlem.8 | ⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ∈ ℕ ) | |
| 9 | pockthlem.9 | ⊢ ( 𝜑 → 𝐶 ∈ ℤ ) | |
| 10 | pockthlem.10 | ⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = 1 ) | |
| 11 | pockthlem.11 | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) = 1 ) | |
| 12 | prmnn | ⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℕ ) | |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
| 14 | 8 | nnnn0d | ⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ∈ ℕ0 ) |
| 15 | 13 14 | nnexpcld | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℕ ) |
| 16 | 15 | nnzd | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℤ ) |
| 17 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 18 | 5 17 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 19 | 18 | nnzd | ⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 20 | gcddvds | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑃 ) ) | |
| 21 | 9 19 20 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑃 ) ) |
| 22 | 21 | simpld | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ) |
| 23 | 9 19 | gcdcld | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∈ ℕ0 ) |
| 24 | 23 | nn0zd | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∈ ℤ ) |
| 25 | 1 2 | nnmulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
| 26 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 27 | 25 26 | eleqtrdi | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 28 | eluzp1p1 | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝐴 · 𝐵 ) + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 30 | 4 29 | eqeltrd | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 31 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 32 | 31 | fveq2i | ⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 33 | 30 32 | eleqtrrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 34 | eluz2b2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) | |
| 35 | 33 34 | sylib | ⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 36 | 35 | simpld | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 37 | 36 | nnzd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 38 | 21 | simprd | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∥ 𝑃 ) |
| 39 | 24 19 37 38 6 | dvdstrd | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∥ 𝑁 ) |
| 40 | 36 | nnne0d | ⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 41 | simpr | ⊢ ( ( 𝐶 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 42 | 41 | necon3ai | ⊢ ( 𝑁 ≠ 0 → ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) |
| 43 | 40 42 | syl | ⊢ ( 𝜑 → ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) |
| 44 | dvdslegcd | ⊢ ( ( ( ( 𝐶 gcd 𝑃 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝐶 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑁 ) → ( 𝐶 gcd 𝑃 ) ≤ ( 𝐶 gcd 𝑁 ) ) ) | |
| 45 | 24 9 37 43 44 | syl31anc | ⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝑃 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝑃 ) ∥ 𝑁 ) → ( 𝐶 gcd 𝑃 ) ≤ ( 𝐶 gcd 𝑁 ) ) ) |
| 46 | 22 39 45 | mp2and | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ≤ ( 𝐶 gcd 𝑁 ) ) |
| 47 | 10 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) gcd 𝑁 ) = ( 1 gcd 𝑁 ) ) |
| 48 | 1z | ⊢ 1 ∈ ℤ | |
| 49 | eluzp1m1 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 50 | 48 30 49 | sylancr | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 51 | 50 26 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ ) |
| 52 | 51 | nnnn0d | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 53 | zexpcl | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) | |
| 54 | 9 52 53 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) |
| 55 | modgcd | ⊢ ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) gcd 𝑁 ) = ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) ) | |
| 56 | 54 36 55 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) gcd 𝑁 ) = ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) ) |
| 57 | gcdcom | ⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 gcd 𝑁 ) = ( 𝑁 gcd 1 ) ) | |
| 58 | 48 37 57 | sylancr | ⊢ ( 𝜑 → ( 1 gcd 𝑁 ) = ( 𝑁 gcd 1 ) ) |
| 59 | gcd1 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 1 ) = 1 ) | |
| 60 | 37 59 | syl | ⊢ ( 𝜑 → ( 𝑁 gcd 1 ) = 1 ) |
| 61 | 58 60 | eqtrd | ⊢ ( 𝜑 → ( 1 gcd 𝑁 ) = 1 ) |
| 62 | 47 56 61 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) = 1 ) |
| 63 | rpexp | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) = 1 ↔ ( 𝐶 gcd 𝑁 ) = 1 ) ) | |
| 64 | 9 37 51 63 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) gcd 𝑁 ) = 1 ↔ ( 𝐶 gcd 𝑁 ) = 1 ) ) |
| 65 | 62 64 | mpbid | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑁 ) = 1 ) |
| 66 | 46 65 | breqtrd | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ≤ 1 ) |
| 67 | 18 | nnne0d | ⊢ ( 𝜑 → 𝑃 ≠ 0 ) |
| 68 | simpr | ⊢ ( ( 𝐶 = 0 ∧ 𝑃 = 0 ) → 𝑃 = 0 ) | |
| 69 | 68 | necon3ai | ⊢ ( 𝑃 ≠ 0 → ¬ ( 𝐶 = 0 ∧ 𝑃 = 0 ) ) |
| 70 | 67 69 | syl | ⊢ ( 𝜑 → ¬ ( 𝐶 = 0 ∧ 𝑃 = 0 ) ) |
| 71 | gcdn0cl | ⊢ ( ( ( 𝐶 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ ¬ ( 𝐶 = 0 ∧ 𝑃 = 0 ) ) → ( 𝐶 gcd 𝑃 ) ∈ ℕ ) | |
| 72 | 9 19 70 71 | syl21anc | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) ∈ ℕ ) |
| 73 | nnle1eq1 | ⊢ ( ( 𝐶 gcd 𝑃 ) ∈ ℕ → ( ( 𝐶 gcd 𝑃 ) ≤ 1 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) | |
| 74 | 72 73 | syl | ⊢ ( 𝜑 → ( ( 𝐶 gcd 𝑃 ) ≤ 1 ↔ ( 𝐶 gcd 𝑃 ) = 1 ) ) |
| 75 | 66 74 | mpbid | ⊢ ( 𝜑 → ( 𝐶 gcd 𝑃 ) = 1 ) |
| 76 | odzcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℕ ) | |
| 77 | 18 9 75 76 | syl3anc | ⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℕ ) |
| 78 | 77 | nnzd | ⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℤ ) |
| 79 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 80 | 5 79 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 81 | 80 32 | eleqtrdi | ⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 82 | eluzp1m1 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑃 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) → ( 𝑃 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 83 | 48 81 82 | sylancr | ⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 84 | 83 26 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℕ ) |
| 85 | 84 | nnzd | ⊢ ( 𝜑 → ( 𝑃 − 1 ) ∈ ℤ ) |
| 86 | 1 | nnzd | ⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 87 | 51 | nnzd | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 88 | pcdvds | ⊢ ( ( 𝑄 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ 𝐴 ) | |
| 89 | 7 1 88 | syl2anc | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ 𝐴 ) |
| 90 | 2 | nnzd | ⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 91 | dvdsmul1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) | |
| 92 | 86 90 91 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) |
| 93 | 4 | oveq1d | ⊢ ( 𝜑 → ( 𝑁 − 1 ) = ( ( ( 𝐴 · 𝐵 ) + 1 ) − 1 ) ) |
| 94 | 25 | nncnd | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 95 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 96 | pncan | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) + 1 ) − 1 ) = ( 𝐴 · 𝐵 ) ) | |
| 97 | 94 95 96 | sylancl | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝐵 ) + 1 ) − 1 ) = ( 𝐴 · 𝐵 ) ) |
| 98 | 93 97 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 − 1 ) = ( 𝐴 · 𝐵 ) ) |
| 99 | 92 98 | breqtrrd | ⊢ ( 𝜑 → 𝐴 ∥ ( 𝑁 − 1 ) ) |
| 100 | 16 86 87 89 99 | dvdstrd | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑁 − 1 ) ) |
| 101 | 15 | nnne0d | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ≠ 0 ) |
| 102 | dvdsval2 | ⊢ ( ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℤ ∧ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ≠ 0 ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ) ) | |
| 103 | 16 101 87 102 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ) ) |
| 104 | 100 103 | mpbid | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ) |
| 105 | peano2zm | ⊢ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ∈ ℤ ) | |
| 106 | 54 105 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ∈ ℤ ) |
| 107 | 36 | nnred | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 108 | 35 | simprd | ⊢ ( 𝜑 → 1 < 𝑁 ) |
| 109 | 1mod | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) | |
| 110 | 107 108 109 | syl2anc | ⊢ ( 𝜑 → ( 1 mod 𝑁 ) = 1 ) |
| 111 | 10 110 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |
| 112 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 113 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐶 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) ) | |
| 114 | 36 54 112 113 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) ) |
| 115 | 111 114 | mpbid | ⊢ ( 𝜑 → 𝑁 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) |
| 116 | 19 37 106 6 115 | dvdstrd | ⊢ ( 𝜑 → 𝑃 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ) |
| 117 | odzdvds | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑁 − 1 ) ) ) | |
| 118 | 18 9 75 52 117 | syl31anc | ⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( 𝑁 − 1 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑁 − 1 ) ) ) |
| 119 | 116 118 | mpbid | ⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑁 − 1 ) ) |
| 120 | 51 | nncnd | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℂ ) |
| 121 | 15 | nncnd | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∈ ℂ ) |
| 122 | 120 121 101 | divcan1d | ⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) = ( 𝑁 − 1 ) ) |
| 123 | 119 122 | breqtrrd | ⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ) |
| 124 | nprmdvds1 | ⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1 ) | |
| 125 | 5 124 | syl | ⊢ ( 𝜑 → ¬ 𝑃 ∥ 1 ) |
| 126 | 13 | nnzd | ⊢ ( 𝜑 → 𝑄 ∈ ℤ ) |
| 127 | iddvdsexp | ⊢ ( ( 𝑄 ∈ ℤ ∧ ( 𝑄 pCnt 𝐴 ) ∈ ℕ ) → 𝑄 ∥ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) | |
| 128 | 126 8 127 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∥ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) |
| 129 | 126 16 87 128 100 | dvdstrd | ⊢ ( 𝜑 → 𝑄 ∥ ( 𝑁 − 1 ) ) |
| 130 | 13 | nnne0d | ⊢ ( 𝜑 → 𝑄 ≠ 0 ) |
| 131 | dvdsval2 | ⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑄 ≠ 0 ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑄 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ) ) | |
| 132 | 126 130 87 131 | syl3anc | ⊢ ( 𝜑 → ( 𝑄 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ) ) |
| 133 | 129 132 | mpbid | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ) |
| 134 | 52 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝑁 − 1 ) ) |
| 135 | 51 | nnred | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ ) |
| 136 | 13 | nnred | ⊢ ( 𝜑 → 𝑄 ∈ ℝ ) |
| 137 | 13 | nngt0d | ⊢ ( 𝜑 → 0 < 𝑄 ) |
| 138 | ge0div | ⊢ ( ( ( 𝑁 − 1 ) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 0 < 𝑄 ) → ( 0 ≤ ( 𝑁 − 1 ) ↔ 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) | |
| 139 | 135 136 137 138 | syl3anc | ⊢ ( 𝜑 → ( 0 ≤ ( 𝑁 − 1 ) ↔ 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 140 | 134 139 | mpbid | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) |
| 141 | elnn0z | ⊢ ( ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ↔ ( ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℤ ∧ 0 ≤ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) | |
| 142 | 133 140 141 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ) |
| 143 | zexpcl | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ) → ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) ∈ ℤ ) | |
| 144 | 9 142 143 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) ∈ ℤ ) |
| 145 | peano2zm | ⊢ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) ∈ ℤ → ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∈ ℤ ) | |
| 146 | 144 145 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∈ ℤ ) |
| 147 | dvdsgcd | ⊢ ( ( 𝑃 ∈ ℤ ∧ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ) ) | |
| 148 | 19 146 37 147 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ) ) |
| 149 | 6 148 | mpan2d | ⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) → 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ) ) |
| 150 | odzdvds | ⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) ∧ ( ( 𝑁 − 1 ) / 𝑄 ) ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) | |
| 151 | 18 9 75 142 150 | syl31anc | ⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 152 | 13 | nncnd | ⊢ ( 𝜑 → 𝑄 ∈ ℂ ) |
| 153 | 8 | nnzd | ⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ∈ ℤ ) |
| 154 | 152 130 153 | expm1d | ⊢ ( 𝜑 → ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) = ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) / 𝑄 ) ) |
| 155 | 154 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) = ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) / 𝑄 ) ) ) |
| 156 | 135 15 | nndivred | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℝ ) |
| 157 | 156 | recnd | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℂ ) |
| 158 | 157 121 152 130 | divassd | ⊢ ( 𝜑 → ( ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) / 𝑄 ) = ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) / 𝑄 ) ) ) |
| 159 | 122 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) / 𝑄 ) = ( ( 𝑁 − 1 ) / 𝑄 ) ) |
| 160 | 155 158 159 | 3eqtr2d | ⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) = ( ( 𝑁 − 1 ) / 𝑄 ) ) |
| 161 | 160 | breq2d | ⊢ ( 𝜑 → ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( 𝑁 − 1 ) / 𝑄 ) ) ) |
| 162 | 151 161 | bitr4d | ⊢ ( 𝜑 → ( 𝑃 ∥ ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ) ) |
| 163 | 11 | breq2d | ⊢ ( 𝜑 → ( 𝑃 ∥ ( ( ( 𝐶 ↑ ( ( 𝑁 − 1 ) / 𝑄 ) ) − 1 ) gcd 𝑁 ) ↔ 𝑃 ∥ 1 ) ) |
| 164 | 149 162 163 | 3imtr3d | ⊢ ( 𝜑 → ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) → 𝑃 ∥ 1 ) ) |
| 165 | 125 164 | mtod | ⊢ ( 𝜑 → ¬ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ) |
| 166 | prmpwdvds | ⊢ ( ( ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∈ ℤ ∧ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∈ ℤ ) ∧ ( 𝑄 ∈ ℙ ∧ ( 𝑄 pCnt 𝐴 ) ∈ ℕ ) ∧ ( ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) ∧ ¬ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ( ( 𝑁 − 1 ) / ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ) · ( 𝑄 ↑ ( ( 𝑄 pCnt 𝐴 ) − 1 ) ) ) ) ) → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ) | |
| 167 | 104 78 7 8 123 165 166 | syl222anc | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ) |
| 168 | odzphi | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝑃 ) = 1 ) → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ϕ ‘ 𝑃 ) ) | |
| 169 | 18 9 75 168 | syl3anc | ⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( ϕ ‘ 𝑃 ) ) |
| 170 | phiprm | ⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) | |
| 171 | 5 170 | syl | ⊢ ( 𝜑 → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| 172 | 169 171 | breqtrd | ⊢ ( 𝜑 → ( ( odℤ ‘ 𝑃 ) ‘ 𝐶 ) ∥ ( 𝑃 − 1 ) ) |
| 173 | 16 78 85 167 172 | dvdstrd | ⊢ ( 𝜑 → ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑃 − 1 ) ) |
| 174 | pcdvdsb | ⊢ ( ( 𝑄 ∈ ℙ ∧ ( 𝑃 − 1 ) ∈ ℤ ∧ ( 𝑄 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑄 pCnt 𝐴 ) ≤ ( 𝑄 pCnt ( 𝑃 − 1 ) ) ↔ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑃 − 1 ) ) ) | |
| 175 | 7 85 14 174 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑄 pCnt 𝐴 ) ≤ ( 𝑄 pCnt ( 𝑃 − 1 ) ) ↔ ( 𝑄 ↑ ( 𝑄 pCnt 𝐴 ) ) ∥ ( 𝑃 − 1 ) ) ) |
| 176 | 173 175 | mpbird | ⊢ ( 𝜑 → ( 𝑄 pCnt 𝐴 ) ≤ ( 𝑄 pCnt ( 𝑃 − 1 ) ) ) |