This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd operator is commutative. Theorem 1.4(a) in ApostolNT p. 16. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ ( 𝑁 = 0 ∧ 𝑀 = 0 ) ) | |
| 2 | ancom | ⊢ ( ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) ↔ ( 𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀 ) ) | |
| 3 | 2 | rabbii | ⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } = { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀 ) } |
| 4 | 3 | supeq1i | ⊢ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀 ) } , ℝ , < ) |
| 5 | 1 4 | ifbieq2i | ⊢ if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) = if ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀 ) } , ℝ , < ) ) |
| 6 | gcdval | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = if ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) | |
| 7 | gcdval | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = if ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀 ) } , ℝ , < ) ) ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = if ( ( 𝑁 = 0 ∧ 𝑀 = 0 ) , 0 , sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑁 ∧ 𝑛 ∥ 𝑀 ) } , ℝ , < ) ) ) |
| 9 | 5 6 8 | 3eqtr4a | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) |