This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modgcd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 3 | modval | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( 𝑀 mod 𝑁 ) = ( 𝑀 − ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 mod 𝑁 ) = ( 𝑀 − ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) |
| 5 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 7 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 9 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 10 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 11 | redivcl | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0 ) → ( 𝑀 / 𝑁 ) ∈ ℝ ) | |
| 12 | 1 9 10 11 | syl3an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / 𝑁 ) ∈ ℝ ) |
| 13 | 12 | 3anidm23 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / 𝑁 ) ∈ ℝ ) |
| 14 | 13 | flcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℤ ) |
| 15 | 14 | zcnd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) |
| 16 | mulneg1 | ⊢ ( ( ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) = - ( ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) | |
| 17 | mulcom | ⊢ ( ( ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) = ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) | |
| 18 | 17 | negeqd | ⊢ ( ( ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → - ( ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) = - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) |
| 19 | 16 18 | eqtrd | ⊢ ( ( ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) = - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) |
| 20 | 19 | ancoms | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) → ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) = - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) |
| 21 | 20 | 3adant1 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) → ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) = - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) → ( 𝑀 + ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) = ( 𝑀 + - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) |
| 23 | mulcl | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) → ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ∈ ℂ ) | |
| 24 | negsub | ⊢ ( ( 𝑀 ∈ ℂ ∧ ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ∈ ℂ ) → ( 𝑀 + - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) = ( 𝑀 − ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) | |
| 25 | 23 24 | sylan2 | ⊢ ( ( 𝑀 ∈ ℂ ∧ ( 𝑁 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) ) → ( 𝑀 + - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) = ( 𝑀 − ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) |
| 26 | 25 | 3impb | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) → ( 𝑀 + - ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) = ( 𝑀 − ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) |
| 27 | 22 26 | eqtrd | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℂ ) → ( 𝑀 + ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) = ( 𝑀 − ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) |
| 28 | 6 8 15 27 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) = ( 𝑀 − ( 𝑁 · ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ) ) ) |
| 29 | 4 28 | eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 mod 𝑁 ) = ( 𝑀 + ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 gcd ( 𝑀 mod 𝑁 ) ) = ( 𝑁 gcd ( 𝑀 + ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) ) ) |
| 31 | 14 | znegcld | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℤ ) |
| 32 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 34 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) | |
| 35 | gcdaddm | ⊢ ( ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑁 gcd ( 𝑀 + ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) ) ) | |
| 36 | 31 33 34 35 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑁 gcd ( 𝑀 + ( - ( ⌊ ‘ ( 𝑀 / 𝑁 ) ) · 𝑁 ) ) ) ) |
| 37 | 30 36 | eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 gcd ( 𝑀 mod 𝑁 ) ) = ( 𝑁 gcd 𝑀 ) ) |
| 38 | zmodcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 mod 𝑁 ) ∈ ℕ0 ) | |
| 39 | 38 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 mod 𝑁 ) ∈ ℤ ) |
| 40 | 33 39 | gcdcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 gcd ( 𝑀 mod 𝑁 ) ) = ( ( 𝑀 mod 𝑁 ) gcd 𝑁 ) ) |
| 41 | 33 34 | gcdcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 42 | 37 40 41 | 3eqtr3d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) gcd 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |