This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1mod | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 | ⊢ 0 < 1 | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝑁 ) → 0 < 𝑁 ) ) | |
| 5 | 2 3 4 | mp3an12 | ⊢ ( 𝑁 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝑁 ) → 0 < 𝑁 ) ) |
| 6 | 1 5 | mpani | ⊢ ( 𝑁 ∈ ℝ → ( 1 < 𝑁 → 0 < 𝑁 ) ) |
| 7 | 6 | imdistani | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) |
| 8 | elrp | ⊢ ( 𝑁 ∈ ℝ+ ↔ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → 𝑁 ∈ ℝ+ ) |
| 10 | 9 3 | jctil | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) |
| 11 | simpr | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → 1 < 𝑁 ) | |
| 12 | 0le1 | ⊢ 0 ≤ 1 | |
| 13 | 11 12 | jctil | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 0 ≤ 1 ∧ 1 < 𝑁 ) ) |
| 14 | modid | ⊢ ( ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ 1 ∧ 1 < 𝑁 ) ) → ( 1 mod 𝑁 ) = 1 ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) |