This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdslegcd | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑛 ∈ ℤ ∣ ∀ 𝑧 ∈ { 𝑀 , 𝑁 } 𝑛 ∥ 𝑧 } = { 𝑛 ∈ ℤ ∣ ∀ 𝑧 ∈ { 𝑀 , 𝑁 } 𝑛 ∥ 𝑧 } | |
| 2 | eqid | ⊢ { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } = { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } | |
| 3 | 1 2 | gcdcllem3 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∈ ℕ ∧ ( sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑀 ∧ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ∥ 𝑁 ) ∧ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) ) |
| 4 | 3 | simp3d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
| 5 | gcdn0val | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) | |
| 6 | 5 | breq2d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ↔ 𝐾 ≤ sup ( { 𝑛 ∈ ℤ ∣ ( 𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁 ) } , ℝ , < ) ) ) |
| 7 | 4 6 | sylibrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 8 | 7 | com12 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) → ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 10 | 9 | com12 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∈ ℤ ∧ ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 11 | 10 | exp4b | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝐾 ∈ ℤ → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 12 | 11 | com23 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ℤ → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) ) |
| 13 | 12 | impcom | ⊢ ( ( 𝐾 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 14 | 13 | 3impb | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 15 | 14 | imp | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁 ) → 𝐾 ≤ ( 𝑀 gcd 𝑁 ) ) ) |