This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two numbers A and B are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0exp | ⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 0 ↑ 𝑁 ) gcd 0 ) = ( 0 gcd 0 ) ) |
| 3 | 2 | eqeq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( ( 0 ↑ 𝑁 ) gcd 0 ) = 1 ↔ ( 0 gcd 0 ) = 1 ) ) |
| 4 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ) | |
| 5 | oveq12 | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) = ( 0 ↑ 𝑁 ) ∧ 𝐵 = 0 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = ( ( 0 ↑ 𝑁 ) gcd 0 ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = ( ( 0 ↑ 𝑁 ) gcd 0 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( ( 0 ↑ 𝑁 ) gcd 0 ) = 1 ) ) |
| 8 | oveq12 | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 gcd 𝐵 ) = ( 0 gcd 0 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 gcd 𝐵 ) = 1 ↔ ( 0 gcd 0 ) = 1 ) ) |
| 10 | 7 9 | bibi12d | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ↔ ( ( ( 0 ↑ 𝑁 ) gcd 0 ) = 1 ↔ ( 0 gcd 0 ) = 1 ) ) ) |
| 11 | 3 10 | syl5ibrcom | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) ) |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) ) |
| 13 | exprmfct | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) | |
| 14 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐴 ∈ ℤ ) | |
| 15 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝑁 ∈ ℕ ) | |
| 16 | 15 | nnnn0d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝑁 ∈ ℕ0 ) |
| 17 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
| 20 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐵 ∈ ℤ ) | |
| 21 | 20 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 22 | gcddvds | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) ) |
| 24 | 23 | simpld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
| 25 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 26 | 25 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 27 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) | |
| 28 | 14 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → 𝐴 ∈ ℂ ) |
| 29 | expeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 30 | 28 15 29 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) |
| 31 | 30 | anbi1d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) = 0 ∧ 𝐵 = 0 ) ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 32 | 27 31 | mtbird | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ¬ ( ( 𝐴 ↑ 𝑁 ) = 0 ∧ 𝐵 = 0 ) ) |
| 33 | gcdn0cl | ⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( ( 𝐴 ↑ 𝑁 ) = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ ) | |
| 34 | 18 20 32 33 | syl21anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ ) |
| 35 | 34 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ) |
| 37 | dvdstr | ⊢ ( ( 𝑝 ∈ ℤ ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) | |
| 38 | 26 36 19 37 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
| 39 | 24 38 | mpan2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
| 40 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 41 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) | |
| 42 | 15 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℕ ) |
| 43 | prmdvdsexp | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑝 ∥ 𝐴 ) ) | |
| 44 | 40 41 42 43 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ↔ 𝑝 ∥ 𝐴 ) ) |
| 45 | 39 44 | sylibd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → 𝑝 ∥ 𝐴 ) ) |
| 46 | 23 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) |
| 47 | dvdstr | ⊢ ( ( 𝑝 ∈ ℤ ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) | |
| 48 | 26 36 21 47 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
| 49 | 46 48 | mpan2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
| 50 | 45 49 | jcad | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) ) |
| 51 | dvdsgcd | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) | |
| 52 | 26 41 21 51 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
| 53 | nprmdvds1 | ⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) | |
| 54 | breq2 | ⊢ ( ( 𝐴 gcd 𝐵 ) = 1 → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ↔ 𝑝 ∥ 1 ) ) | |
| 55 | 54 | notbid | ⊢ ( ( 𝐴 gcd 𝐵 ) = 1 → ( ¬ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ↔ ¬ 𝑝 ∥ 1 ) ) |
| 56 | 53 55 | syl5ibrcom | ⊢ ( 𝑝 ∈ ℙ → ( ( 𝐴 gcd 𝐵 ) = 1 → ¬ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
| 57 | 56 | necon2ad | ⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 58 | 57 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 59 | 50 52 58 | 3syld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 60 | 59 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 61 | gcdn0cl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 62 | 61 | 3adantl3 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 63 | eluz2b3 | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) | |
| 64 | 63 | baib | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 65 | 62 64 | syl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 66 | 60 65 | sylibrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 67 | 13 66 | syl5 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 68 | exprmfct | ⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) | |
| 69 | 62 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 70 | 69 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 71 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 72 | 41 21 71 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 73 | 72 | simpld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 74 | iddvdsexp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∥ ( 𝐴 ↑ 𝑁 ) ) | |
| 75 | 41 42 74 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∥ ( 𝐴 ↑ 𝑁 ) ) |
| 76 | 70 41 19 73 75 | dvdstrd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
| 77 | dvdstr | ⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) | |
| 78 | 26 70 19 77 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ ( 𝐴 ↑ 𝑁 ) ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
| 79 | 76 78 | mpan2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
| 80 | 72 | simprd | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 81 | dvdstr | ⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) | |
| 82 | 26 70 21 81 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
| 83 | 80 82 | mpan2d | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → 𝑝 ∥ 𝐵 ) ) |
| 84 | 79 83 | jcad | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ∧ 𝑝 ∥ 𝐵 ) ) ) |
| 85 | dvdsgcd | ⊢ ( ( 𝑝 ∈ ℤ ∧ ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) ) | |
| 86 | 26 19 21 85 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( 𝐴 ↑ 𝑁 ) ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) ) |
| 87 | breq2 | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ↔ 𝑝 ∥ 1 ) ) | |
| 88 | 87 | notbid | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 → ( ¬ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ↔ ¬ 𝑝 ∥ 1 ) ) |
| 89 | 53 88 | syl5ibrcom | ⊢ ( 𝑝 ∈ ℙ → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 → ¬ 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ) ) |
| 90 | 89 | necon2ad | ⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
| 91 | 90 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
| 92 | 84 86 91 | 3syld | ⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
| 93 | 92 | rexlimdva | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
| 94 | eluz2b3 | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ ∧ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) | |
| 95 | 94 | baib | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ℕ → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
| 96 | 34 95 | syl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ) ) |
| 97 | 93 96 | sylibrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 98 | 68 97 | syl5 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 99 | 67 98 | impbid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 gcd 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 100 | 99 96 65 | 3bitr3d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) ≠ 1 ↔ ( 𝐴 gcd 𝐵 ) ≠ 1 ) ) |
| 101 | 100 | necon4bid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |
| 102 | 101 | ex | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) ) |
| 103 | 12 102 | pm2.61d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd 𝐵 ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = 1 ) ) |