This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluz2b2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 4 | ltle | ⊢ ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 1 < 𝑁 → 1 ≤ 𝑁 ) ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝑁 ∈ ℤ → ( 1 < 𝑁 → 1 ≤ 𝑁 ) ) |
| 6 | 5 | imdistani | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |
| 7 | elnnz1 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 9 | simpr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → 1 < 𝑁 ) | |
| 10 | 8 9 | jca | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 11 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 12 | 11 | anim1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) |
| 13 | 10 12 | impbii | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |
| 14 | 1 13 | bitri | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) ) |