This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Euler phi function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phiprm | ⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | ⊢ 1 ∈ ℕ | |
| 2 | phiprmpw | ⊢ ( ( 𝑃 ∈ ℙ ∧ 1 ∈ ℕ ) → ( ϕ ‘ ( 𝑃 ↑ 1 ) ) = ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ ( 𝑃 ↑ 1 ) ) = ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) ) |
| 4 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 5 | 4 | zcnd | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 6 | 5 | exp1d | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ ( 𝑃 ↑ 1 ) ) = ( ϕ ‘ 𝑃 ) ) |
| 8 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 9 | 8 | oveq2i | ⊢ ( 𝑃 ↑ ( 1 − 1 ) ) = ( 𝑃 ↑ 0 ) |
| 10 | 5 | exp0d | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) = 1 ) |
| 11 | 9 10 | eqtrid | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ ( 1 − 1 ) ) = 1 ) |
| 12 | 11 | oveq1d | ⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) = ( 1 · ( 𝑃 − 1 ) ) ) |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | subcl | ⊢ ( ( 𝑃 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑃 − 1 ) ∈ ℂ ) | |
| 15 | 5 13 14 | sylancl | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 − 1 ) ∈ ℂ ) |
| 16 | 15 | mullidd | ⊢ ( 𝑃 ∈ ℙ → ( 1 · ( 𝑃 − 1 ) ) = ( 𝑃 − 1 ) ) |
| 17 | 12 16 | eqtrd | ⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 ↑ ( 1 − 1 ) ) · ( 𝑃 − 1 ) ) = ( 𝑃 − 1 ) ) |
| 18 | 3 7 17 | 3eqtr3d | ⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |