This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of any group element is a divisor of the Euler phi function. (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | odzphi | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∥ ( ϕ ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerth | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) | |
| 2 | simp1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) | |
| 3 | simp2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝐴 ∈ ℤ ) | |
| 4 | 2 | phicld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 5 | 4 | nnnn0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) |
| 6 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ) |
| 8 | 1zzd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 1 ∈ ℤ ) | |
| 9 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) | |
| 10 | 2 7 8 9 | syl3anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) ↔ 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) ) |
| 11 | 1 10 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ) |
| 12 | odzdvds | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) ∧ ( ϕ ‘ 𝑁 ) ∈ ℕ0 ) → ( 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∥ ( ϕ ‘ 𝑁 ) ) ) | |
| 13 | 5 12 | mpdan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝑁 ∥ ( ( 𝐴 ↑ ( ϕ ‘ 𝑁 ) ) − 1 ) ↔ ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∥ ( ϕ ‘ 𝑁 ) ) ) |
| 14 | 11 13 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( odℤ ‘ 𝑁 ) ‘ 𝐴 ) ∥ ( ϕ ‘ 𝑁 ) ) |