This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iddvdsexp | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( 𝑀 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 2 | zexpcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ) |
| 4 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) | |
| 5 | dvdsmul2 | ⊢ ( ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∥ ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) |
| 7 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 8 | expm1t | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ 𝑁 ) = ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ 𝑁 ) = ( ( 𝑀 ↑ ( 𝑁 − 1 ) ) · 𝑀 ) ) |
| 10 | 6 9 | breqtrrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∥ ( 𝑀 ↑ 𝑁 ) ) |