This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of a number with 1 is 1. Theorem 1.4(d)1 in ApostolNT p. 16. (Contributed by Mario Carneiro, 19-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcd1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( ( 𝑀 gcd 1 ) ∥ 𝑀 ∧ ( 𝑀 gcd 1 ) ∥ 1 ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 gcd 1 ) ∥ 𝑀 ∧ ( 𝑀 gcd 1 ) ∥ 1 ) ) |
| 4 | 3 | simprd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ∥ 1 ) |
| 5 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 6 | simpr | ⊢ ( ( 𝑀 = 0 ∧ 1 = 0 ) → 1 = 0 ) | |
| 7 | 6 | necon3ai | ⊢ ( 1 ≠ 0 → ¬ ( 𝑀 = 0 ∧ 1 = 0 ) ) |
| 8 | 5 7 | ax-mp | ⊢ ¬ ( 𝑀 = 0 ∧ 1 = 0 ) |
| 9 | gcdn0cl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 1 = 0 ) ) → ( 𝑀 gcd 1 ) ∈ ℕ ) | |
| 10 | 8 9 | mpan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑀 gcd 1 ) ∈ ℕ ) |
| 11 | 1 10 | mpan2 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ∈ ℕ ) |
| 12 | 11 | nnzd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ∈ ℤ ) |
| 13 | 1nn | ⊢ 1 ∈ ℕ | |
| 14 | dvdsle | ⊢ ( ( ( 𝑀 gcd 1 ) ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( 𝑀 gcd 1 ) ∥ 1 → ( 𝑀 gcd 1 ) ≤ 1 ) ) | |
| 15 | 12 13 14 | sylancl | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 gcd 1 ) ∥ 1 → ( 𝑀 gcd 1 ) ≤ 1 ) ) |
| 16 | 4 15 | mpd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) ≤ 1 ) |
| 17 | nnle1eq1 | ⊢ ( ( 𝑀 gcd 1 ) ∈ ℕ → ( ( 𝑀 gcd 1 ) ≤ 1 ↔ ( 𝑀 gcd 1 ) = 1 ) ) | |
| 18 | 11 17 | syl | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 gcd 1 ) ≤ 1 ↔ ( 𝑀 gcd 1 ) = 1 ) ) |
| 19 | 16 18 | mpbid | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 gcd 1 ) = 1 ) |