This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divides relation is transitive, a deduction version of dvdstr . (Contributed by metakunt, 12-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdstrd.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| dvdstrd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvdstrd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| dvdstrd.4 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑀 ) | ||
| dvdstrd.5 | ⊢ ( 𝜑 → 𝑀 ∥ 𝑁 ) | ||
| Assertion | dvdstrd | ⊢ ( 𝜑 → 𝐾 ∥ 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdstrd.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 2 | dvdstrd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | dvdstrd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | dvdstrd.4 | ⊢ ( 𝜑 → 𝐾 ∥ 𝑀 ) | |
| 5 | dvdstrd.5 | ⊢ ( 𝜑 → 𝑀 ∥ 𝑁 ) | |
| 6 | dvdstr | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → 𝐾 ∥ 𝑁 ) ) | |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁 ) → 𝐾 ∥ 𝑁 ) ) |
| 8 | 4 5 7 | mp2and | ⊢ ( 𝜑 → 𝐾 ∥ 𝑁 ) |