This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same group-nature have the same group multiple function. K is expected to either be _V (when strong equality is available) or B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgpropd.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| mulgpropd.n | ⊢ × = ( .g ‘ 𝐻 ) | ||
| mulgpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | ||
| mulgpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐻 ) ) | ||
| mulgpropd.i | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) | ||
| mulgpropd.k | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐾 ) | ||
| mulgpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | ||
| Assertion | mulgpropd | ⊢ ( 𝜑 → · = × ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgpropd.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 2 | mulgpropd.n | ⊢ × = ( .g ‘ 𝐻 ) | |
| 3 | mulgpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) | |
| 4 | mulgpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐻 ) ) | |
| 5 | mulgpropd.i | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) | |
| 6 | mulgpropd.k | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐾 ) | |
| 7 | mulgpropd.e | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | |
| 8 | ssel | ⊢ ( 𝐵 ⊆ 𝐾 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐾 ) ) | |
| 9 | ssel | ⊢ ( 𝐵 ⊆ 𝐾 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐾 ) ) | |
| 10 | 8 9 | anim12d | ⊢ ( 𝐵 ⊆ 𝐾 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) ) |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) |
| 13 | 12 7 | syldan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 14 | 3 4 13 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 16 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ℤ ) | |
| 17 | vex | ⊢ 𝑏 ∈ V | |
| 18 | 17 | fvconst2 | ⊢ ( 𝑥 ∈ ℕ → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) = 𝑏 ) |
| 19 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 20 | 19 | eqcomi | ⊢ ( ℤ≥ ‘ 1 ) = ℕ |
| 21 | 18 20 | eleq2s | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) = 𝑏 ) |
| 22 | 21 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) = 𝑏 ) |
| 23 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ⊆ 𝐾 ) |
| 24 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) | |
| 25 | 23 24 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐾 ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑏 ∈ 𝐾 ) |
| 27 | 22 26 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) ∈ 𝐾 ) |
| 28 | 6 | 3ad2antl1 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐾 ) |
| 29 | 7 | 3ad2antl1 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 30 | 16 27 28 29 | seqfeq3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ) |
| 31 | 30 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) ) |
| 32 | 3 4 13 | grpinvpropd | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
| 33 | 32 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
| 34 | 30 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) |
| 35 | 33 34 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) |
| 36 | 31 35 | ifeq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) = if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) |
| 37 | 15 36 | ifeq12d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) = if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
| 38 | 37 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
| 39 | eqidd | ⊢ ( 𝜑 → ℤ = ℤ ) | |
| 40 | eqidd | ⊢ ( 𝜑 → if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) = if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) | |
| 41 | 39 3 40 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
| 42 | eqidd | ⊢ ( 𝜑 → if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) = if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) | |
| 43 | 39 4 42 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
| 44 | 38 41 43 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
| 45 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 46 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 47 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 48 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 49 | 45 46 47 48 1 | mulgfval | ⊢ · = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
| 50 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 51 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 52 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 53 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 54 | 50 51 52 53 2 | mulgfval | ⊢ × = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
| 55 | 44 49 54 | 3eqtr4g | ⊢ ( 𝜑 → · = × ) |