This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite bags on 1o is just the set of all functions from 1o to NN0 . (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psr1baslem | ⊢ ( ℕ0 ↑m 1o ) = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 | ⊢ ( ( ℕ0 ↑m 1o ) = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↔ ∀ 𝑓 ∈ ( ℕ0 ↑m 1o ) ( ◡ 𝑓 “ ℕ ) ∈ Fin ) | |
| 2 | df1o2 | ⊢ 1o = { ∅ } | |
| 3 | snfi | ⊢ { ∅ } ∈ Fin | |
| 4 | 2 3 | eqeltri | ⊢ 1o ∈ Fin |
| 5 | cnvimass | ⊢ ( ◡ 𝑓 “ ℕ ) ⊆ dom 𝑓 | |
| 6 | elmapi | ⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → 𝑓 : 1o ⟶ ℕ0 ) | |
| 7 | 5 6 | fssdm | ⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → ( ◡ 𝑓 “ ℕ ) ⊆ 1o ) |
| 8 | ssfi | ⊢ ( ( 1o ∈ Fin ∧ ( ◡ 𝑓 “ ℕ ) ⊆ 1o ) → ( ◡ 𝑓 “ ℕ ) ∈ Fin ) | |
| 9 | 4 7 8 | sylancr | ⊢ ( 𝑓 ∈ ( ℕ0 ↑m 1o ) → ( ◡ 𝑓 “ ℕ ) ∈ Fin ) |
| 10 | 1 9 | mprgbir | ⊢ ( ℕ0 ↑m 1o ) = { 𝑓 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |