This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1coefsupp.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| ply1coefsupp.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| ply1coefsupp.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| ply1coefsupp.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| ply1coefsupp.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) | ||
| ply1coefsupp.e | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| ply1coefsupp.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | ||
| Assertion | ply1coefsupp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1coefsupp.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1coefsupp.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | ply1coefsupp.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | ply1coefsupp.n | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 5 | ply1coefsupp.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) | |
| 6 | ply1coefsupp.e | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 7 | ply1coefsupp.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 9 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝑃 ∈ LMod ) |
| 11 | nn0ex | ⊢ ℕ0 ∈ V | |
| 12 | 11 | a1i | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ℕ0 ∈ V ) |
| 13 | 5 3 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 14 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 15 | 5 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
| 16 | 14 15 | syl | ⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
| 18 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 19 | 2 1 3 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 21 | 13 6 17 18 20 | mulgnn0cld | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 23 | 7 3 1 22 | coe1f | ⊢ ( 𝐾 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 24 | 23 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 25 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 26 | 7 3 1 25 | coe1sfi | ⊢ ( 𝐾 ∈ 𝐵 → 𝐴 finSupp ( 0g ‘ 𝑅 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐴 finSupp ( 0g ‘ 𝑅 ) ) |
| 28 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 29 | 28 | eqcomd | ⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 31 | 30 | fveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ 𝑅 ) ) |
| 32 | 27 31 | breqtrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐴 finSupp ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 33 | 3 8 4 10 12 21 24 32 | mptscmfsuppd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |