This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum depends only on the base set and additive operation. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Stefan O'Rear, 1-Feb-2015) (Proof shortened by Mario Carneiro, 18-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpropd.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| gsumpropd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| gsumpropd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| gsumpropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | ||
| gsumpropd.p | ⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) | ||
| Assertion | gsumpropd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpropd.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | gsumpropd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 3 | gsumpropd.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 4 | gsumpropd.b | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) | |
| 5 | gsumpropd.p | ⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) | |
| 6 | 5 | oveqd | ⊢ ( 𝜑 → ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) |
| 7 | 6 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ↔ ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ) ) |
| 8 | 5 | oveqd | ⊢ ( 𝜑 → ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) ) |
| 9 | 8 | eqeq1d | ⊢ ( 𝜑 → ( ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ↔ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 11 | 4 10 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) ↔ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) ) ) |
| 12 | 4 11 | rabeqbidv | ⊢ ( 𝜑 → { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) |
| 13 | 12 | sseq2d | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ↔ ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
| 14 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 15 | 5 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ∧ 𝑏 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝐻 ) 𝑏 ) ) |
| 16 | 14 4 15 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 17 | 5 | seqeq2d | ⊢ ( 𝜑 → seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) = seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ) |
| 18 | 17 | fveq1d | ⊢ ( 𝜑 → ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝜑 → ( 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ↔ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝜑 → ( ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 21 | 20 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 22 | 21 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ↔ ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 23 | 22 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) = ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 24 | 12 | difeq2d | ⊢ ( 𝜑 → ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) = ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) |
| 25 | 24 | imaeq2d | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝜑 → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) = ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) = ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) |
| 28 | 27 | f1oeq2d | ⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ↔ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) |
| 29 | 25 | f1oeq3d | ⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ↔ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) |
| 30 | 28 29 | bitrd | ⊢ ( 𝜑 → ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ↔ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) |
| 31 | 5 | seqeq2d | ⊢ ( 𝜑 → seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 32 | 31 26 | fveq12d | ⊢ ( 𝜑 → ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) |
| 33 | 32 | eqeq2d | ⊢ ( 𝜑 → ( 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ↔ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) |
| 34 | 30 33 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) |
| 35 | 34 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) |
| 36 | 35 | iotabidv | ⊢ ( 𝜑 → ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) = ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) |
| 37 | 23 36 | ifeq12d | ⊢ ( 𝜑 → if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) = if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) ) |
| 38 | 13 16 37 | ifbieq12d | ⊢ ( 𝜑 → if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) ) ) |
| 39 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 40 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 41 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 42 | eqid | ⊢ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } | |
| 43 | eqidd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) | |
| 44 | eqidd | ⊢ ( 𝜑 → dom 𝐹 = dom 𝐹 ) | |
| 45 | 39 40 41 42 43 2 1 44 | gsumvalx | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐺 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) ) ) |
| 46 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 47 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 48 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 49 | eqid | ⊢ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } = { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } | |
| 50 | eqidd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) = ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) | |
| 51 | 46 47 48 49 50 3 1 44 | gsumvalx | ⊢ ( 𝜑 → ( 𝐻 Σg 𝐹 ) = if ( ran 𝐹 ⊆ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } , ( 0g ‘ 𝐻 ) , if ( dom 𝐹 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝐹 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝐻 ) , 𝐹 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝐻 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 𝑠 ∈ ( Base ‘ 𝐻 ) ∣ ∀ 𝑡 ∈ ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) = 𝑡 ∧ ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) = 𝑡 ) } ) ) ) ) ) ) ) ) ) |
| 52 | 38 45 51 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐻 Σg 𝐹 ) ) |