This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mplgrp.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| Assertion | mpllmod | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplgrp.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 3 | simpl | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ 𝑉 ) | |
| 4 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑅 ∈ Ring ) | |
| 5 | 2 3 4 | psrlmod | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( 𝐼 mPwSer 𝑅 ) ∈ LMod ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 7 | 2 1 6 3 4 | mpllss | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 8 | 1 2 6 | mplval2 | ⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 9 | eqid | ⊢ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 10 | 8 9 | lsslmod | ⊢ ( ( ( 𝐼 mPwSer 𝑅 ) ∈ LMod ∧ ( Base ‘ 𝑃 ) ∈ ( LSubSp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) → 𝑃 ∈ LMod ) |
| 11 | 5 7 10 | syl2anc | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ) → 𝑃 ∈ LMod ) |