This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1plusg.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| ply1plusg.s | ⊢ 𝑆 = ( 1o mPoly 𝑅 ) | ||
| ply1vscafval.n | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | ||
| Assertion | ply1vsca | ⊢ · = ( ·𝑠 ‘ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1plusg.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| 2 | ply1plusg.s | ⊢ 𝑆 = ( 1o mPoly 𝑅 ) | |
| 3 | ply1vscafval.n | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | |
| 4 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 6 | 2 4 5 | mplvsca2 | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) |
| 7 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 9 | 7 4 8 | psr1vsca | ⊢ ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ ( 1o mPwSer 𝑅 ) ) |
| 10 | fvex | ⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V | |
| 11 | 1 7 | ply1val | ⊢ 𝑌 = ( ( PwSer1 ‘ 𝑅 ) ↾s ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
| 12 | 11 8 | ressvsca | ⊢ ( ( Base ‘ ( 1o mPoly 𝑅 ) ) ∈ V → ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ 𝑌 ) ) |
| 13 | 10 12 | ax-mp | ⊢ ( ·𝑠 ‘ ( PwSer1 ‘ 𝑅 ) ) = ( ·𝑠 ‘ 𝑌 ) |
| 14 | 6 9 13 | 3eqtr2i | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑌 ) |
| 15 | 3 14 | eqtr4i | ⊢ · = ( ·𝑠 ‘ 𝑆 ) |