This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbii.1 | ⊢ 𝐴 = 𝐵 | |
| raleqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | ||
| Assertion | raleqbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbii.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | raleqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| 3 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
| 4 | 3 2 | imbi12i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 → 𝜒 ) ) |
| 5 | 4 | ralbii2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜒 ) |