This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqcoe1ply1eq.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| eqcoe1ply1eq.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| eqcoe1ply1eq.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | ||
| eqcoe1ply1eq.c | ⊢ 𝐶 = ( coe1 ‘ 𝐿 ) | ||
| Assertion | eqcoe1ply1eq | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) → 𝐾 = 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcoe1ply1eq.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | eqcoe1ply1eq.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | eqcoe1ply1eq.a | ⊢ 𝐴 = ( coe1 ‘ 𝐾 ) | |
| 4 | eqcoe1ply1eq.c | ⊢ 𝐶 = ( coe1 ‘ 𝐿 ) | |
| 5 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑛 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐶 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑛 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ↔ ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) ) |
| 8 | 7 | rspccv | ⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
| 11 | 3 | fveq1i | ⊢ ( 𝐴 ‘ 𝑛 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) |
| 12 | 4 | fveq1i | ⊢ ( 𝐶 ‘ 𝑛 ) = ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) |
| 13 | 10 11 12 | 3eqtr3g | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) = ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ) |
| 14 | 13 | oveq1d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
| 15 | 14 | mpteq2dva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 17 | eqid | ⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) | |
| 18 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 19 | eqid | ⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) | |
| 20 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 21 | eqid | ⊢ ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐾 ) | |
| 22 | 1 17 2 18 19 20 21 | ply1coe | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝐾 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 24 | eqid | ⊢ ( coe1 ‘ 𝐿 ) = ( coe1 ‘ 𝐿 ) | |
| 25 | 1 17 2 18 19 20 24 | ply1coe | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐿 ∈ 𝐵 ) → 𝐿 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 26 | 25 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝐿 = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) |
| 27 | 23 26 | eqeq12d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝐾 = 𝐿 ↔ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → ( 𝐾 = 𝐿 ↔ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝐿 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑃 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) ) ) |
| 29 | 16 28 | mpbird | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) → 𝐾 = 𝐿 ) |
| 30 | 29 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) → 𝐾 = 𝐿 ) ) |