This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjhth.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjhth.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℋ ) | ||
| pjhth.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐻 ) | ||
| pjhth.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐻 ) | ||
| pjhth.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ) | ||
| pjhth.6 | ⊢ 𝑇 = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) | ||
| Assertion | pjhthlem1 | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjhth.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℋ ) | |
| 3 | pjhth.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐻 ) | |
| 4 | pjhth.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐻 ) | |
| 5 | pjhth.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ) | |
| 6 | pjhth.6 | ⊢ 𝑇 = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) | |
| 7 | 1 | cheli | ⊢ ( 𝐵 ∈ 𝐻 → 𝐵 ∈ ℋ ) |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ℋ ) |
| 9 | hvsubcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) | |
| 10 | 2 8 9 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) |
| 11 | 1 | cheli | ⊢ ( 𝐶 ∈ 𝐻 → 𝐶 ∈ ℋ ) |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ℋ ) |
| 13 | hicl | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ∈ ℂ ) | |
| 14 | 10 12 13 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ∈ ℂ ) |
| 15 | 14 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ∈ ℝ ) |
| 16 | 15 | recnd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ∈ ℂ ) |
| 17 | 15 | resqcld | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ∈ ℝ ) |
| 18 | 17 | renegcld | ⊢ ( 𝜑 → - ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ∈ ℝ ) |
| 19 | hiidrcl | ⊢ ( 𝐶 ∈ ℋ → ( 𝐶 ·ih 𝐶 ) ∈ ℝ ) | |
| 20 | 12 19 | syl | ⊢ ( 𝜑 → ( 𝐶 ·ih 𝐶 ) ∈ ℝ ) |
| 21 | 2re | ⊢ 2 ∈ ℝ | |
| 22 | readdcl | ⊢ ( ( ( 𝐶 ·ih 𝐶 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( 𝐶 ·ih 𝐶 ) + 2 ) ∈ ℝ ) | |
| 23 | 20 21 22 | sylancl | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 2 ) ∈ ℝ ) |
| 24 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 25 | peano2re | ⊢ ( ( 𝐶 ·ih 𝐶 ) ∈ ℝ → ( ( 𝐶 ·ih 𝐶 ) + 1 ) ∈ ℝ ) | |
| 26 | 20 25 | syl | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 1 ) ∈ ℝ ) |
| 27 | hiidge0 | ⊢ ( 𝐶 ∈ ℋ → 0 ≤ ( 𝐶 ·ih 𝐶 ) ) | |
| 28 | 12 27 | syl | ⊢ ( 𝜑 → 0 ≤ ( 𝐶 ·ih 𝐶 ) ) |
| 29 | 20 | ltp1d | ⊢ ( 𝜑 → ( 𝐶 ·ih 𝐶 ) < ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) |
| 30 | 24 20 26 28 29 | lelttrd | ⊢ ( 𝜑 → 0 < ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) |
| 31 | 26 | ltp1d | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 1 ) < ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) + 1 ) ) |
| 32 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 33 | 32 | oveq2i | ⊢ ( ( 𝐶 ·ih 𝐶 ) + 2 ) = ( ( 𝐶 ·ih 𝐶 ) + ( 1 + 1 ) ) |
| 34 | 20 | recnd | ⊢ ( 𝜑 → ( 𝐶 ·ih 𝐶 ) ∈ ℂ ) |
| 35 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 36 | addass | ⊢ ( ( ( 𝐶 ·ih 𝐶 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) + 1 ) = ( ( 𝐶 ·ih 𝐶 ) + ( 1 + 1 ) ) ) | |
| 37 | 35 35 36 | mp3an23 | ⊢ ( ( 𝐶 ·ih 𝐶 ) ∈ ℂ → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) + 1 ) = ( ( 𝐶 ·ih 𝐶 ) + ( 1 + 1 ) ) ) |
| 38 | 34 37 | syl | ⊢ ( 𝜑 → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) + 1 ) = ( ( 𝐶 ·ih 𝐶 ) + ( 1 + 1 ) ) ) |
| 39 | 33 38 | eqtr4id | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 2 ) = ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) + 1 ) ) |
| 40 | 31 39 | breqtrrd | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 1 ) < ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) |
| 41 | 24 26 23 30 40 | lttrd | ⊢ ( 𝜑 → 0 < ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) |
| 42 | 23 41 | elrpd | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 2 ) ∈ ℝ+ ) |
| 43 | oveq2 | ⊢ ( 𝑥 = ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) → ( 𝐴 −ℎ 𝑥 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) | |
| 44 | 43 | fveq2d | ⊢ ( 𝑥 = ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) → ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) = ( normℎ ‘ ( 𝐴 −ℎ ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) |
| 45 | 44 | breq2d | ⊢ ( 𝑥 = ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ↔ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) ) |
| 46 | 1 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 47 | 46 | a1i | ⊢ ( 𝜑 → 𝐻 ∈ Sℋ ) |
| 48 | 26 | recnd | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 1 ) ∈ ℂ ) |
| 49 | 20 28 | ge0p1rpd | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 1 ) ∈ ℝ+ ) |
| 50 | 49 | rpne0d | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 1 ) ≠ 0 ) |
| 51 | 14 48 50 | divcld | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ∈ ℂ ) |
| 52 | 6 51 | eqeltrid | ⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 53 | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑇 ∈ ℂ ∧ 𝐶 ∈ 𝐻 ) → ( 𝑇 ·ℎ 𝐶 ) ∈ 𝐻 ) | |
| 54 | 47 52 4 53 | syl3anc | ⊢ ( 𝜑 → ( 𝑇 ·ℎ 𝐶 ) ∈ 𝐻 ) |
| 55 | shaddcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐵 ∈ 𝐻 ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ 𝐻 ) → ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ∈ 𝐻 ) | |
| 56 | 47 3 54 55 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ∈ 𝐻 ) |
| 57 | 45 5 56 | rspcdva | ⊢ ( 𝜑 → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) |
| 58 | 1 | cheli | ⊢ ( ( 𝑇 ·ℎ 𝐶 ) ∈ 𝐻 → ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) |
| 59 | 54 58 | syl | ⊢ ( 𝜑 → ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) |
| 60 | hvsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) = ( 𝐴 −ℎ ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) | |
| 61 | 2 8 59 60 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) = ( 𝐴 −ℎ ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) |
| 62 | 61 | fveq2d | ⊢ ( 𝜑 → ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( normℎ ‘ ( 𝐴 −ℎ ( 𝐵 +ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) |
| 63 | 57 62 | breqtrrd | ⊢ ( 𝜑 → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) |
| 64 | normcl | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℝ ) | |
| 65 | 10 64 | syl | ⊢ ( 𝜑 → ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℝ ) |
| 66 | hvsubcl | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℋ ) | |
| 67 | 10 59 66 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℋ ) |
| 68 | normcl | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℋ → ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ∈ ℝ ) | |
| 69 | 67 68 | syl | ⊢ ( 𝜑 → ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ∈ ℝ ) |
| 70 | normge0 | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) | |
| 71 | 10 70 | syl | ⊢ ( 𝜑 → 0 ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 72 | 24 65 69 71 63 | letrd | ⊢ ( 𝜑 → 0 ≤ ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) |
| 73 | 65 69 71 72 | le2sqd | ⊢ ( 𝜑 → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↔ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) ) |
| 74 | 63 73 | mpbid | ⊢ ( 𝜑 → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) |
| 75 | 69 | resqcld | ⊢ ( 𝜑 → ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 76 | 65 | resqcld | ⊢ ( 𝜑 → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
| 77 | 75 76 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ↔ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) ) |
| 78 | 74 77 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 79 | 2z | ⊢ 2 ∈ ℤ | |
| 80 | rpexpcl | ⊢ ( ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) | |
| 81 | 49 79 80 | sylancl | ⊢ ( 𝜑 → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
| 82 | 17 81 | rerpdivcld | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
| 83 | 82 23 | remulcld | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ∈ ℝ ) |
| 84 | 83 | recnd | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ∈ ℂ ) |
| 85 | 84 | negcld | ⊢ ( 𝜑 → - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ∈ ℂ ) |
| 86 | hicl | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) | |
| 87 | 10 10 86 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) |
| 88 | 85 87 | pncand | ⊢ ( 𝜑 → ( ( - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) + ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) = - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 89 | normsq | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℋ → ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) = ( ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) | |
| 90 | 67 89 | syl | ⊢ ( 𝜑 → ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) = ( ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) |
| 91 | his2sub | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ∧ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℋ ) → ( ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) | |
| 92 | 10 59 67 91 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) |
| 93 | his2sub2 | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) ) | |
| 94 | 10 10 59 93 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) ) |
| 95 | 94 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) = ( ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) |
| 96 | hicl | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℂ ) | |
| 97 | 10 59 96 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℂ ) |
| 98 | his2sub2 | ⊢ ( ( ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) ) | |
| 99 | 59 10 59 98 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) ) |
| 100 | hicl | ⊢ ( ( ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) | |
| 101 | 59 10 100 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ∈ ℂ ) |
| 102 | hicl | ⊢ ( ( ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℂ ) | |
| 103 | 59 59 102 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℂ ) |
| 104 | 101 103 | subcld | ⊢ ( 𝜑 → ( ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) ∈ ℂ ) |
| 105 | 99 104 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ∈ ℂ ) |
| 106 | 87 97 105 | subsub4d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) + ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) ) |
| 107 | 82 | recnd | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 108 | 35 | a1i | ⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 109 | 107 48 108 | adddid | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) + 1 ) ) = ( ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) + ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · 1 ) ) ) |
| 110 | 39 | oveq2d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) + 1 ) ) ) |
| 111 | his5 | ⊢ ( ( 𝑇 ∈ ℂ ∧ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( ∗ ‘ 𝑇 ) · ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ) | |
| 112 | 52 10 12 111 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( ∗ ‘ 𝑇 ) · ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ) |
| 113 | 52 | cjcld | ⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) ∈ ℂ ) |
| 114 | 113 14 | mulcomd | ⊢ ( 𝜑 → ( ( ∗ ‘ 𝑇 ) · ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ∗ ‘ 𝑇 ) ) ) |
| 115 | 14 | cjcld | ⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ∈ ℂ ) |
| 116 | 14 115 48 50 | divassd | ⊢ ( 𝜑 → ( ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) ) |
| 117 | 14 | absvalsqd | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ) ) |
| 118 | 117 | oveq1d | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) = ( ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 119 | 6 | fveq2i | ⊢ ( ∗ ‘ 𝑇 ) = ( ∗ ‘ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 120 | 14 48 50 | cjdivd | ⊢ ( 𝜑 → ( ∗ ‘ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) = ( ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ∗ ‘ ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) ) |
| 121 | 26 | cjred | ⊢ ( 𝜑 → ( ∗ ‘ ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) = ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) |
| 122 | 121 | oveq2d | ⊢ ( 𝜑 → ( ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ∗ ‘ ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) = ( ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 123 | 120 122 | eqtrd | ⊢ ( 𝜑 → ( ∗ ‘ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) = ( ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 124 | 119 123 | eqtrid | ⊢ ( 𝜑 → ( ∗ ‘ 𝑇 ) = ( ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 125 | 124 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ∗ ‘ 𝑇 ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ( ∗ ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) ) |
| 126 | 116 118 125 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) · ( ∗ ‘ 𝑇 ) ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 127 | 112 114 126 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 128 | 17 | recnd | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ∈ ℂ ) |
| 129 | 128 48 | mulcomd | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) = ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) · ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) ) |
| 130 | 48 | sqvald | ⊢ ( 𝜑 → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) = ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 131 | 129 130 | oveq12d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) = ( ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) · ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) ) |
| 132 | 128 48 48 50 50 | divcan5d | ⊢ ( 𝜑 → ( ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) · ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 133 | 131 132 | eqtr2d | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) ) |
| 134 | 26 | resqcld | ⊢ ( 𝜑 → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ∈ ℝ ) |
| 135 | 134 | recnd | ⊢ ( 𝜑 → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
| 136 | 81 | rpne0d | ⊢ ( 𝜑 → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ≠ 0 ) |
| 137 | 128 48 135 136 | div23d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 138 | 127 133 137 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 139 | 82 26 | remulcld | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ∈ ℝ ) |
| 140 | 138 139 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℝ ) |
| 141 | hire | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ ∧ ( 𝑇 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℝ ↔ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) | |
| 142 | 10 59 141 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ∈ ℝ ↔ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 143 | 140 142 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) |
| 144 | 143 138 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 145 | his35 | ⊢ ( ( ( 𝑇 ∈ ℂ ∧ 𝑇 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐶 ·ih 𝐶 ) ) ) | |
| 146 | 52 52 12 12 145 | syl22anc | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐶 ·ih 𝐶 ) ) ) |
| 147 | 6 | fveq2i | ⊢ ( abs ‘ 𝑇 ) = ( abs ‘ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 148 | 14 48 50 | absdivd | ⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) = ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( abs ‘ ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) ) |
| 149 | 49 | rpge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) |
| 150 | 26 149 | absidd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) = ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) |
| 151 | 150 | oveq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( abs ‘ ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) = ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 152 | 148 151 | eqtrd | ⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) = ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 153 | 147 152 | eqtrid | ⊢ ( 𝜑 → ( abs ‘ 𝑇 ) = ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ) |
| 154 | 153 | oveq1d | ⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) ↑ 2 ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ↑ 2 ) ) |
| 155 | 52 | absvalsqd | ⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) ↑ 2 ) = ( 𝑇 · ( ∗ ‘ 𝑇 ) ) ) |
| 156 | 16 48 50 | sqdivd | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) / ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) ↑ 2 ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) ) |
| 157 | 154 155 156 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑇 · ( ∗ ‘ 𝑇 ) ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) ) |
| 158 | 157 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑇 · ( ∗ ‘ 𝑇 ) ) · ( 𝐶 ·ih 𝐶 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( 𝐶 ·ih 𝐶 ) ) ) |
| 159 | 146 158 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( 𝐶 ·ih 𝐶 ) ) ) |
| 160 | 144 159 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) − ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( 𝐶 ·ih 𝐶 ) ) ) ) |
| 161 | pncan2 | ⊢ ( ( ( 𝐶 ·ih 𝐶 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) − ( 𝐶 ·ih 𝐶 ) ) = 1 ) | |
| 162 | 34 35 161 | sylancl | ⊢ ( 𝜑 → ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) − ( 𝐶 ·ih 𝐶 ) ) = 1 ) |
| 163 | 162 | oveq2d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) − ( 𝐶 ·ih 𝐶 ) ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · 1 ) ) |
| 164 | 107 48 34 | subdid | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) − ( 𝐶 ·ih 𝐶 ) ) ) = ( ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) − ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( 𝐶 ·ih 𝐶 ) ) ) ) |
| 165 | 163 164 | eqtr3d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · 1 ) = ( ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) − ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( 𝐶 ·ih 𝐶 ) ) ) ) |
| 166 | 160 99 165 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · 1 ) ) |
| 167 | 138 166 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) + ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) = ( ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 1 ) ) + ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · 1 ) ) ) |
| 168 | 109 110 167 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) + ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 169 | 168 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝑇 ·ℎ 𝐶 ) ) + ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) ) |
| 170 | 95 106 169 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) − ( ( 𝑇 ·ℎ 𝐶 ) ·ih ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) ) |
| 171 | 90 92 170 | 3eqtrd | ⊢ ( 𝜑 → ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) ) |
| 172 | 87 84 | negsubd | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) − ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) ) |
| 173 | 87 85 | addcomd | ⊢ ( 𝜑 → ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) = ( - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) + ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 174 | 171 172 173 | 3eqtr2d | ⊢ ( 𝜑 → ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) = ( - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) + ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 175 | normsq | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ ℋ → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) | |
| 176 | 10 175 | syl | ⊢ ( 𝜑 → ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) |
| 177 | 174 176 | oveq12d | ⊢ ( 𝜑 → ( ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) + ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) − ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 178 | 23 | renegcld | ⊢ ( 𝜑 → - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ∈ ℝ ) |
| 179 | 178 | recnd | ⊢ ( 𝜑 → - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ∈ ℂ ) |
| 180 | 128 179 135 136 | div23d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) = ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 181 | 23 | recnd | ⊢ ( 𝜑 → ( ( 𝐶 ·ih 𝐶 ) + 2 ) ∈ ℂ ) |
| 182 | 107 181 | mulneg2d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) = - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 183 | 180 182 | eqtrd | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) = - ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 184 | 88 177 183 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝑇 ·ℎ 𝐶 ) ) ) ↑ 2 ) − ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 185 | 78 184 | breqtrrd | ⊢ ( 𝜑 → 0 ≤ ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) ) |
| 186 | 17 178 | remulcld | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ∈ ℝ ) |
| 187 | 186 81 | ge0divd | ⊢ ( 𝜑 → ( 0 ≤ ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ↔ 0 ≤ ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) / ( ( ( 𝐶 ·ih 𝐶 ) + 1 ) ↑ 2 ) ) ) ) |
| 188 | 185 187 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 189 | mulneg12 | ⊢ ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝐶 ·ih 𝐶 ) + 2 ) ∈ ℂ ) → ( - ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) | |
| 190 | 128 181 189 | syl2anc | ⊢ ( 𝜑 → ( - ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) = ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · - ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 191 | 188 190 | breqtrrd | ⊢ ( 𝜑 → 0 ≤ ( - ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) · ( ( 𝐶 ·ih 𝐶 ) + 2 ) ) ) |
| 192 | 18 42 191 | prodge0ld | ⊢ ( 𝜑 → 0 ≤ - ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) |
| 193 | 17 | le0neg1d | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ≤ 0 ↔ 0 ≤ - ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) ) |
| 194 | 192 193 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ≤ 0 ) |
| 195 | 15 | sqge0d | ⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) |
| 196 | 0re | ⊢ 0 ∈ ℝ | |
| 197 | letri3 | ⊢ ( ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) = 0 ↔ ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) ) ) | |
| 198 | 17 196 197 | sylancl | ⊢ ( 𝜑 → ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) = 0 ↔ ( ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) ) ) ) |
| 199 | 194 195 198 | mpbir2and | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) ↑ 2 ) = 0 ) |
| 200 | 16 199 | sqeq0d | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) ) = 0 ) |
| 201 | 14 200 | abs00d | ⊢ ( 𝜑 → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) = 0 ) |