This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for integer exponentiation of positive reals. (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexpcl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ℝ+ ) | |
| 2 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝐴 ≠ 0 ) |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 5 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 6 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 7 | 5 6 | sstri | ⊢ ℝ+ ⊆ ℂ |
| 8 | rpmulcl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) | |
| 9 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 10 | rpreccl | ⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 12 | 7 8 9 11 | expcl2lem | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |
| 13 | 1 3 4 12 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ+ ) |