This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodge0ld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| prodge0ld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| prodge0ld.3 | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) | ||
| Assertion | prodge0ld | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodge0ld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | prodge0ld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 3 | prodge0ld.3 | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 𝐵 ) ) | |
| 4 | 2 | rpcnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 5 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 6 | 4 5 | mulcomd | ⊢ ( 𝜑 → ( 𝐵 · 𝐴 ) = ( 𝐴 · 𝐵 ) ) |
| 7 | 3 6 | breqtrrd | ⊢ ( 𝜑 → 0 ≤ ( 𝐵 · 𝐴 ) ) |
| 8 | 2 1 7 | prodge0rd | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) |