This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjhth.1 | |- H e. CH |
|
| pjhth.2 | |- ( ph -> A e. ~H ) |
||
| pjhth.3 | |- ( ph -> B e. H ) |
||
| pjhth.4 | |- ( ph -> C e. H ) |
||
| pjhth.5 | |- ( ph -> A. x e. H ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h x ) ) ) |
||
| pjhth.6 | |- T = ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) |
||
| Assertion | pjhthlem1 | |- ( ph -> ( ( A -h B ) .ih C ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth.1 | |- H e. CH |
|
| 2 | pjhth.2 | |- ( ph -> A e. ~H ) |
|
| 3 | pjhth.3 | |- ( ph -> B e. H ) |
|
| 4 | pjhth.4 | |- ( ph -> C e. H ) |
|
| 5 | pjhth.5 | |- ( ph -> A. x e. H ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h x ) ) ) |
|
| 6 | pjhth.6 | |- T = ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) |
|
| 7 | 1 | cheli | |- ( B e. H -> B e. ~H ) |
| 8 | 3 7 | syl | |- ( ph -> B e. ~H ) |
| 9 | hvsubcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) |
|
| 10 | 2 8 9 | syl2anc | |- ( ph -> ( A -h B ) e. ~H ) |
| 11 | 1 | cheli | |- ( C e. H -> C e. ~H ) |
| 12 | 4 11 | syl | |- ( ph -> C e. ~H ) |
| 13 | hicl | |- ( ( ( A -h B ) e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih C ) e. CC ) |
|
| 14 | 10 12 13 | syl2anc | |- ( ph -> ( ( A -h B ) .ih C ) e. CC ) |
| 15 | 14 | abscld | |- ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) e. RR ) |
| 16 | 15 | recnd | |- ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) e. CC ) |
| 17 | 15 | resqcld | |- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR ) |
| 18 | 17 | renegcld | |- ( ph -> -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR ) |
| 19 | hiidrcl | |- ( C e. ~H -> ( C .ih C ) e. RR ) |
|
| 20 | 12 19 | syl | |- ( ph -> ( C .ih C ) e. RR ) |
| 21 | 2re | |- 2 e. RR |
|
| 22 | readdcl | |- ( ( ( C .ih C ) e. RR /\ 2 e. RR ) -> ( ( C .ih C ) + 2 ) e. RR ) |
|
| 23 | 20 21 22 | sylancl | |- ( ph -> ( ( C .ih C ) + 2 ) e. RR ) |
| 24 | 0red | |- ( ph -> 0 e. RR ) |
|
| 25 | peano2re | |- ( ( C .ih C ) e. RR -> ( ( C .ih C ) + 1 ) e. RR ) |
|
| 26 | 20 25 | syl | |- ( ph -> ( ( C .ih C ) + 1 ) e. RR ) |
| 27 | hiidge0 | |- ( C e. ~H -> 0 <_ ( C .ih C ) ) |
|
| 28 | 12 27 | syl | |- ( ph -> 0 <_ ( C .ih C ) ) |
| 29 | 20 | ltp1d | |- ( ph -> ( C .ih C ) < ( ( C .ih C ) + 1 ) ) |
| 30 | 24 20 26 28 29 | lelttrd | |- ( ph -> 0 < ( ( C .ih C ) + 1 ) ) |
| 31 | 26 | ltp1d | |- ( ph -> ( ( C .ih C ) + 1 ) < ( ( ( C .ih C ) + 1 ) + 1 ) ) |
| 32 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 33 | 32 | oveq2i | |- ( ( C .ih C ) + 2 ) = ( ( C .ih C ) + ( 1 + 1 ) ) |
| 34 | 20 | recnd | |- ( ph -> ( C .ih C ) e. CC ) |
| 35 | ax-1cn | |- 1 e. CC |
|
| 36 | addass | |- ( ( ( C .ih C ) e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) |
|
| 37 | 35 35 36 | mp3an23 | |- ( ( C .ih C ) e. CC -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) |
| 38 | 34 37 | syl | |- ( ph -> ( ( ( C .ih C ) + 1 ) + 1 ) = ( ( C .ih C ) + ( 1 + 1 ) ) ) |
| 39 | 33 38 | eqtr4id | |- ( ph -> ( ( C .ih C ) + 2 ) = ( ( ( C .ih C ) + 1 ) + 1 ) ) |
| 40 | 31 39 | breqtrrd | |- ( ph -> ( ( C .ih C ) + 1 ) < ( ( C .ih C ) + 2 ) ) |
| 41 | 24 26 23 30 40 | lttrd | |- ( ph -> 0 < ( ( C .ih C ) + 2 ) ) |
| 42 | 23 41 | elrpd | |- ( ph -> ( ( C .ih C ) + 2 ) e. RR+ ) |
| 43 | oveq2 | |- ( x = ( B +h ( T .h C ) ) -> ( A -h x ) = ( A -h ( B +h ( T .h C ) ) ) ) |
|
| 44 | 43 | fveq2d | |- ( x = ( B +h ( T .h C ) ) -> ( normh ` ( A -h x ) ) = ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) |
| 45 | 44 | breq2d | |- ( x = ( B +h ( T .h C ) ) -> ( ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h x ) ) <-> ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) ) |
| 46 | 1 | chshii | |- H e. SH |
| 47 | 46 | a1i | |- ( ph -> H e. SH ) |
| 48 | 26 | recnd | |- ( ph -> ( ( C .ih C ) + 1 ) e. CC ) |
| 49 | 20 28 | ge0p1rpd | |- ( ph -> ( ( C .ih C ) + 1 ) e. RR+ ) |
| 50 | 49 | rpne0d | |- ( ph -> ( ( C .ih C ) + 1 ) =/= 0 ) |
| 51 | 14 48 50 | divcld | |- ( ph -> ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) e. CC ) |
| 52 | 6 51 | eqeltrid | |- ( ph -> T e. CC ) |
| 53 | shmulcl | |- ( ( H e. SH /\ T e. CC /\ C e. H ) -> ( T .h C ) e. H ) |
|
| 54 | 47 52 4 53 | syl3anc | |- ( ph -> ( T .h C ) e. H ) |
| 55 | shaddcl | |- ( ( H e. SH /\ B e. H /\ ( T .h C ) e. H ) -> ( B +h ( T .h C ) ) e. H ) |
|
| 56 | 47 3 54 55 | syl3anc | |- ( ph -> ( B +h ( T .h C ) ) e. H ) |
| 57 | 45 5 56 | rspcdva | |- ( ph -> ( normh ` ( A -h B ) ) <_ ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) |
| 58 | 1 | cheli | |- ( ( T .h C ) e. H -> ( T .h C ) e. ~H ) |
| 59 | 54 58 | syl | |- ( ph -> ( T .h C ) e. ~H ) |
| 60 | hvsubass | |- ( ( A e. ~H /\ B e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) -h ( T .h C ) ) = ( A -h ( B +h ( T .h C ) ) ) ) |
|
| 61 | 2 8 59 60 | syl3anc | |- ( ph -> ( ( A -h B ) -h ( T .h C ) ) = ( A -h ( B +h ( T .h C ) ) ) ) |
| 62 | 61 | fveq2d | |- ( ph -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) = ( normh ` ( A -h ( B +h ( T .h C ) ) ) ) ) |
| 63 | 57 62 | breqtrrd | |- ( ph -> ( normh ` ( A -h B ) ) <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ) |
| 64 | normcl | |- ( ( A -h B ) e. ~H -> ( normh ` ( A -h B ) ) e. RR ) |
|
| 65 | 10 64 | syl | |- ( ph -> ( normh ` ( A -h B ) ) e. RR ) |
| 66 | hvsubcl | |- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) -h ( T .h C ) ) e. ~H ) |
|
| 67 | 10 59 66 | syl2anc | |- ( ph -> ( ( A -h B ) -h ( T .h C ) ) e. ~H ) |
| 68 | normcl | |- ( ( ( A -h B ) -h ( T .h C ) ) e. ~H -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) e. RR ) |
|
| 69 | 67 68 | syl | |- ( ph -> ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) e. RR ) |
| 70 | normge0 | |- ( ( A -h B ) e. ~H -> 0 <_ ( normh ` ( A -h B ) ) ) |
|
| 71 | 10 70 | syl | |- ( ph -> 0 <_ ( normh ` ( A -h B ) ) ) |
| 72 | 24 65 69 71 63 | letrd | |- ( ph -> 0 <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ) |
| 73 | 65 69 71 72 | le2sqd | |- ( ph -> ( ( normh ` ( A -h B ) ) <_ ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) <-> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) ) |
| 74 | 63 73 | mpbid | |- ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) |
| 75 | 69 | resqcld | |- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) e. RR ) |
| 76 | 65 | resqcld | |- ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) e. RR ) |
| 77 | 75 76 | subge0d | |- ( ph -> ( 0 <_ ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) <-> ( ( normh ` ( A -h B ) ) ^ 2 ) <_ ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) ) ) |
| 78 | 74 77 | mpbird | |- ( ph -> 0 <_ ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
| 79 | 2z | |- 2 e. ZZ |
|
| 80 | rpexpcl | |- ( ( ( ( C .ih C ) + 1 ) e. RR+ /\ 2 e. ZZ ) -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR+ ) |
|
| 81 | 49 79 80 | sylancl | |- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR+ ) |
| 82 | 17 81 | rerpdivcld | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) e. RR ) |
| 83 | 82 23 | remulcld | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. RR ) |
| 84 | 83 | recnd | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. CC ) |
| 85 | 84 | negcld | |- ( ph -> -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) e. CC ) |
| 86 | hicl | |- ( ( ( A -h B ) e. ~H /\ ( A -h B ) e. ~H ) -> ( ( A -h B ) .ih ( A -h B ) ) e. CC ) |
|
| 87 | 10 10 86 | syl2anc | |- ( ph -> ( ( A -h B ) .ih ( A -h B ) ) e. CC ) |
| 88 | 85 87 | pncand | |- ( ph -> ( ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
| 89 | normsq | |- ( ( ( A -h B ) -h ( T .h C ) ) e. ~H -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) |
|
| 90 | 67 89 | syl | |- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) |
| 91 | his2sub | |- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H /\ ( ( A -h B ) -h ( T .h C ) ) e. ~H ) -> ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) |
|
| 92 | 10 59 67 91 | syl3anc | |- ( ph -> ( ( ( A -h B ) -h ( T .h C ) ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) |
| 93 | his2sub2 | |- ( ( ( A -h B ) e. ~H /\ ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) ) |
|
| 94 | 10 10 59 93 | syl3anc | |- ( ph -> ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) ) |
| 95 | 94 | oveq1d | |- ( ph -> ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) |
| 96 | hicl | |- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( A -h B ) .ih ( T .h C ) ) e. CC ) |
|
| 97 | 10 59 96 | syl2anc | |- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) e. CC ) |
| 98 | his2sub2 | |- ( ( ( T .h C ) e. ~H /\ ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) ) |
|
| 99 | 59 10 59 98 | syl3anc | |- ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) ) |
| 100 | hicl | |- ( ( ( T .h C ) e. ~H /\ ( A -h B ) e. ~H ) -> ( ( T .h C ) .ih ( A -h B ) ) e. CC ) |
|
| 101 | 59 10 100 | syl2anc | |- ( ph -> ( ( T .h C ) .ih ( A -h B ) ) e. CC ) |
| 102 | hicl | |- ( ( ( T .h C ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( T .h C ) .ih ( T .h C ) ) e. CC ) |
|
| 103 | 59 59 102 | syl2anc | |- ( ph -> ( ( T .h C ) .ih ( T .h C ) ) e. CC ) |
| 104 | 101 103 | subcld | |- ( ph -> ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) e. CC ) |
| 105 | 99 104 | eqeltrd | |- ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) e. CC ) |
| 106 | 87 97 105 | subsub4d | |- ( ph -> ( ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( A -h B ) .ih ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) ) |
| 107 | 82 | recnd | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) e. CC ) |
| 108 | 35 | a1i | |- ( ph -> 1 e. CC ) |
| 109 | 107 48 108 | adddid | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) + 1 ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) + ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) ) |
| 110 | 39 | oveq2d | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) + 1 ) ) ) |
| 111 | his5 | |- ( ( T e. CC /\ ( A -h B ) e. ~H /\ C e. ~H ) -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) ) |
|
| 112 | 52 10 12 111 | syl3anc | |- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) ) |
| 113 | 52 | cjcld | |- ( ph -> ( * ` T ) e. CC ) |
| 114 | 113 14 | mulcomd | |- ( ph -> ( ( * ` T ) x. ( ( A -h B ) .ih C ) ) = ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) ) |
| 115 | 14 | cjcld | |- ( ph -> ( * ` ( ( A -h B ) .ih C ) ) e. CC ) |
| 116 | 14 115 48 50 | divassd | |- ( ph -> ( ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) / ( ( C .ih C ) + 1 ) ) = ( ( ( A -h B ) .ih C ) x. ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) ) |
| 117 | 14 | absvalsqd | |- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) ) |
| 118 | 117 | oveq1d | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) = ( ( ( ( A -h B ) .ih C ) x. ( * ` ( ( A -h B ) .ih C ) ) ) / ( ( C .ih C ) + 1 ) ) ) |
| 119 | 6 | fveq2i | |- ( * ` T ) = ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) |
| 120 | 14 48 50 | cjdivd | |- ( ph -> ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( * ` ( ( C .ih C ) + 1 ) ) ) ) |
| 121 | 26 | cjred | |- ( ph -> ( * ` ( ( C .ih C ) + 1 ) ) = ( ( C .ih C ) + 1 ) ) |
| 122 | 121 | oveq2d | |- ( ph -> ( ( * ` ( ( A -h B ) .ih C ) ) / ( * ` ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
| 123 | 120 122 | eqtrd | |- ( ph -> ( * ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
| 124 | 119 123 | eqtrid | |- ( ph -> ( * ` T ) = ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
| 125 | 124 | oveq2d | |- ( ph -> ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) = ( ( ( A -h B ) .ih C ) x. ( ( * ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) ) |
| 126 | 116 118 125 | 3eqtr4rd | |- ( ph -> ( ( ( A -h B ) .ih C ) x. ( * ` T ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) |
| 127 | 112 114 126 | 3eqtrd | |- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) |
| 128 | 17 | recnd | |- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. CC ) |
| 129 | 128 48 | mulcomd | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) = ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) |
| 130 | 48 | sqvald | |- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) = ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) |
| 131 | 129 130 | oveq12d | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) / ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) ) |
| 132 | 128 48 48 50 50 | divcan5d | |- ( ph -> ( ( ( ( C .ih C ) + 1 ) x. ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) / ( ( ( C .ih C ) + 1 ) x. ( ( C .ih C ) + 1 ) ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) ) |
| 133 | 131 132 | eqtr2d | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( C .ih C ) + 1 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
| 134 | 26 | resqcld | |- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. RR ) |
| 135 | 134 | recnd | |- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) e. CC ) |
| 136 | 81 | rpne0d | |- ( ph -> ( ( ( C .ih C ) + 1 ) ^ 2 ) =/= 0 ) |
| 137 | 128 48 135 136 | div23d | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 1 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) |
| 138 | 127 133 137 | 3eqtrd | |- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) |
| 139 | 82 26 | remulcld | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) e. RR ) |
| 140 | 138 139 | eqeltrd | |- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) e. RR ) |
| 141 | hire | |- ( ( ( A -h B ) e. ~H /\ ( T .h C ) e. ~H ) -> ( ( ( A -h B ) .ih ( T .h C ) ) e. RR <-> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) ) |
|
| 142 | 10 59 141 | syl2anc | |- ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) e. RR <-> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) ) |
| 143 | 140 142 | mpbid | |- ( ph -> ( ( A -h B ) .ih ( T .h C ) ) = ( ( T .h C ) .ih ( A -h B ) ) ) |
| 144 | 143 138 | eqtr3d | |- ( ph -> ( ( T .h C ) .ih ( A -h B ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) ) |
| 145 | his35 | |- ( ( ( T e. CC /\ T e. CC ) /\ ( C e. ~H /\ C e. ~H ) ) -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) ) |
|
| 146 | 52 52 12 12 145 | syl22anc | |- ( ph -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) ) |
| 147 | 6 | fveq2i | |- ( abs ` T ) = ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) |
| 148 | 14 48 50 | absdivd | |- ( ph -> ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( abs ` ( ( C .ih C ) + 1 ) ) ) ) |
| 149 | 49 | rpge0d | |- ( ph -> 0 <_ ( ( C .ih C ) + 1 ) ) |
| 150 | 26 149 | absidd | |- ( ph -> ( abs ` ( ( C .ih C ) + 1 ) ) = ( ( C .ih C ) + 1 ) ) |
| 151 | 150 | oveq2d | |- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) / ( abs ` ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
| 152 | 148 151 | eqtrd | |- ( ph -> ( abs ` ( ( ( A -h B ) .ih C ) / ( ( C .ih C ) + 1 ) ) ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
| 153 | 147 152 | eqtrid | |- ( ph -> ( abs ` T ) = ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ) |
| 154 | 153 | oveq1d | |- ( ph -> ( ( abs ` T ) ^ 2 ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ^ 2 ) ) |
| 155 | 52 | absvalsqd | |- ( ph -> ( ( abs ` T ) ^ 2 ) = ( T x. ( * ` T ) ) ) |
| 156 | 16 48 50 | sqdivd | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) / ( ( C .ih C ) + 1 ) ) ^ 2 ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
| 157 | 154 155 156 | 3eqtr3d | |- ( ph -> ( T x. ( * ` T ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
| 158 | 157 | oveq1d | |- ( ph -> ( ( T x. ( * ` T ) ) x. ( C .ih C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) |
| 159 | 146 158 | eqtrd | |- ( ph -> ( ( T .h C ) .ih ( T .h C ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) |
| 160 | 144 159 | oveq12d | |- ( ph -> ( ( ( T .h C ) .ih ( A -h B ) ) - ( ( T .h C ) .ih ( T .h C ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) |
| 161 | pncan2 | |- ( ( ( C .ih C ) e. CC /\ 1 e. CC ) -> ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) = 1 ) |
|
| 162 | 34 35 161 | sylancl | |- ( ph -> ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) = 1 ) |
| 163 | 162 | oveq2d | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) |
| 164 | 107 48 34 | subdid | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( ( C .ih C ) + 1 ) - ( C .ih C ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) |
| 165 | 163 164 | eqtr3d | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( C .ih C ) ) ) ) |
| 166 | 160 99 165 | 3eqtr4d | |- ( ph -> ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) |
| 167 | 138 166 | oveq12d | |- ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 1 ) ) + ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. 1 ) ) ) |
| 168 | 109 110 167 | 3eqtr4rd | |- ( ph -> ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
| 169 | 168 | oveq2d | |- ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( A -h B ) .ih ( T .h C ) ) + ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
| 170 | 95 106 169 | 3eqtrd | |- ( ph -> ( ( ( A -h B ) .ih ( ( A -h B ) -h ( T .h C ) ) ) - ( ( T .h C ) .ih ( ( A -h B ) -h ( T .h C ) ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
| 171 | 90 92 170 | 3eqtrd | |- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
| 172 | 87 84 | negsubd | |- ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) + -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) = ( ( ( A -h B ) .ih ( A -h B ) ) - ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) ) |
| 173 | 87 85 | addcomd | |- ( ph -> ( ( ( A -h B ) .ih ( A -h B ) ) + -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) = ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) ) |
| 174 | 171 172 173 | 3eqtr2d | |- ( ph -> ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) = ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) ) |
| 175 | normsq | |- ( ( A -h B ) e. ~H -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) ) |
|
| 176 | 10 175 | syl | |- ( ph -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) ) |
| 177 | 174 176 | oveq12d | |- ( ph -> ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) + ( ( A -h B ) .ih ( A -h B ) ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) ) |
| 178 | 23 | renegcld | |- ( ph -> -u ( ( C .ih C ) + 2 ) e. RR ) |
| 179 | 178 | recnd | |- ( ph -> -u ( ( C .ih C ) + 2 ) e. CC ) |
| 180 | 128 179 135 136 | div23d | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. -u ( ( C .ih C ) + 2 ) ) ) |
| 181 | 23 | recnd | |- ( ph -> ( ( C .ih C ) + 2 ) e. CC ) |
| 182 | 107 181 | mulneg2d | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. -u ( ( C .ih C ) + 2 ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
| 183 | 180 182 | eqtrd | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = -u ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) x. ( ( C .ih C ) + 2 ) ) ) |
| 184 | 88 177 183 | 3eqtr4rd | |- ( ph -> ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) = ( ( ( normh ` ( ( A -h B ) -h ( T .h C ) ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
| 185 | 78 184 | breqtrrd | |- ( ph -> 0 <_ ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) |
| 186 | 17 178 | remulcld | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) e. RR ) |
| 187 | 186 81 | ge0divd | |- ( ph -> ( 0 <_ ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) <-> 0 <_ ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) / ( ( ( C .ih C ) + 1 ) ^ 2 ) ) ) ) |
| 188 | 185 187 | mpbird | |- ( ph -> 0 <_ ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) |
| 189 | mulneg12 | |- ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. CC /\ ( ( C .ih C ) + 2 ) e. CC ) -> ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) |
|
| 190 | 128 181 189 | syl2anc | |- ( ph -> ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) = ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. -u ( ( C .ih C ) + 2 ) ) ) |
| 191 | 188 190 | breqtrrd | |- ( ph -> 0 <_ ( -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) x. ( ( C .ih C ) + 2 ) ) ) |
| 192 | 18 42 191 | prodge0ld | |- ( ph -> 0 <_ -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) |
| 193 | 17 | le0neg1d | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 <-> 0 <_ -u ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) |
| 194 | 192 193 | mpbird | |- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 ) |
| 195 | 15 | sqge0d | |- ( ph -> 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) |
| 196 | 0re | |- 0 e. RR |
|
| 197 | letri3 | |- ( ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) e. RR /\ 0 e. RR ) -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) ) |
|
| 198 | 17 196 197 | sylancl | |- ( ph -> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 <-> ( ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) <_ 0 /\ 0 <_ ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) ) ) ) |
| 199 | 194 195 198 | mpbir2and | |- ( ph -> ( ( abs ` ( ( A -h B ) .ih C ) ) ^ 2 ) = 0 ) |
| 200 | 16 199 | sqeq0d | |- ( ph -> ( abs ` ( ( A -h B ) .ih C ) ) = 0 ) |
| 201 | 14 200 | abs00d | |- ( ph -> ( ( A -h B ) .ih C ) = 0 ) |