This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 2 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 4 | hvaddsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) | |
| 5 | 3 4 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
| 6 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ 𝐶 ) ) |
| 9 | simp1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → 𝐴 ∈ ℋ ) | |
| 10 | hvaddcl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) | |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) |
| 12 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) | |
| 13 | 9 11 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
| 14 | hvsubval | ⊢ ( ( ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) | |
| 15 | 3 14 | sylan | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 16 | 15 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 17 | ax-hvdistr1 | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) | |
| 18 | 1 17 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 19 | 18 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 20 | 16 19 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ 𝐶 ) ) ) ) |
| 22 | 13 21 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐵 ) −ℎ 𝐶 ) ) ) |
| 23 | 5 8 22 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |