This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shmulcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh2 | ⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐻 ∈ Sℋ → ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) |
| 3 | 2 | simprd | ⊢ ( 𝐻 ∈ Sℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) |
| 4 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ↔ ( 𝐴 ·ℎ 𝑦 ) ∈ 𝐻 ) ) |
| 6 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·ℎ 𝑦 ) = ( 𝐴 ·ℎ 𝐵 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·ℎ 𝑦 ) ∈ 𝐻 ↔ ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) ) |
| 8 | 5 7 | rspc2v | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 → ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) ) |
| 9 | 3 8 | syl5com | ⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) ) |
| 10 | 9 | 3impib | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ·ℎ 𝐵 ) ∈ 𝐻 ) |