This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with self is not negative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hiidge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 | ⊢ ( ¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ ) | |
| 2 | df-ne | ⊢ ( 𝐴 ≠ 0ℎ ↔ ¬ 𝐴 = 0ℎ ) | |
| 3 | ax-his4 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) | |
| 4 | 2 3 | sylan2br | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
| 5 | 4 | ex | ⊢ ( 𝐴 ∈ ℋ → ( ¬ 𝐴 = 0ℎ → 0 < ( 𝐴 ·ih 𝐴 ) ) ) |
| 6 | oveq1 | ⊢ ( 𝐴 = 0ℎ → ( 𝐴 ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) ) | |
| 7 | hi01 | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) | |
| 8 | 6 7 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → ( 𝐴 ·ih 𝐴 ) = 0 ) |
| 9 | 8 | eqcomd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ ) → 0 = ( 𝐴 ·ih 𝐴 ) ) |
| 10 | 9 | ex | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 = 0ℎ → 0 = ( 𝐴 ·ih 𝐴 ) ) ) |
| 11 | 5 10 | orim12d | ⊢ ( 𝐴 ∈ ℋ → ( ( ¬ 𝐴 = 0ℎ ∨ 𝐴 = 0ℎ ) → ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 12 | 1 11 | mpi | ⊢ ( 𝐴 ∈ ℋ → ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
| 15 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( 𝐴 ·ih 𝐴 ) ↔ ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) ) | |
| 16 | 13 14 15 | sylancr | ⊢ ( 𝐴 ∈ ℋ → ( 0 ≤ ( 𝐴 ·ih 𝐴 ) ↔ ( 0 < ( 𝐴 ·ih 𝐴 ) ∨ 0 = ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 17 | 12 16 | mpbird | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) |