This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102 (existence part). (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjhth | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) = ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 2 | shocsh | ⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) | |
| 3 | shsss | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) | |
| 4 | 1 2 3 | syl2anc2 | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ℋ ) |
| 5 | fveq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ⊥ ‘ 𝐻 ) = ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) ) | |
| 6 | 5 | rexeqdv | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
| 7 | 6 | rexeqbi1dv | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ ∃ 𝑦 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) → ( ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ↔ ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) ) |
| 9 | ifchhv | ⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∈ Cℋ | |
| 10 | id | ⊢ ( 𝑥 ∈ ℋ → 𝑥 ∈ ℋ ) | |
| 11 | 9 10 | pjhthlem2 | ⊢ ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ∃ 𝑧 ∈ ( ⊥ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , ℋ ) ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 12 | 8 11 | dedth | ⊢ ( 𝐻 ∈ Cℋ → ( 𝑥 ∈ ℋ → ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
| 13 | shsel | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝑥 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) | |
| 14 | 1 2 13 | syl2anc2 | ⊢ ( 𝐻 ∈ Cℋ → ( 𝑥 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑦 ∈ 𝐻 ∃ 𝑧 ∈ ( ⊥ ‘ 𝐻 ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ) |
| 15 | 12 14 | sylibrd | ⊢ ( 𝐻 ∈ Cℋ → ( 𝑥 ∈ ℋ → 𝑥 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) ) |
| 16 | 15 | ssrdv | ⊢ ( 𝐻 ∈ Cℋ → ℋ ⊆ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
| 17 | 4 16 | eqssd | ⊢ ( 𝐻 ∈ Cℋ → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) = ℋ ) |