This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Lemma 3.1(S5) of Beran p. 95. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his5 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 ·ih 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 2 | ax-his1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) |
| 5 | 4 | 3com12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) ) |
| 6 | ax-his3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) = ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) | |
| 7 | 6 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) = ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐴 ·ℎ 𝐶 ) ·ih 𝐵 ) ) = ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) ) |
| 9 | hicl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 ·ih 𝐵 ) ∈ ℂ ) | |
| 10 | cjmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ·ih 𝐵 ) ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) | |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
| 12 | 11 | 3impb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
| 13 | 12 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
| 14 | ax-his1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) | |
| 15 | 14 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ 𝐴 ) · ( 𝐵 ·ih 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( 𝐶 ·ih 𝐵 ) ) ) ) |
| 17 | 13 16 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( 𝐴 · ( 𝐶 ·ih 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 ·ih 𝐶 ) ) ) |
| 18 | 5 8 17 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( 𝐴 ·ℎ 𝐶 ) ) = ( ( ∗ ‘ 𝐴 ) · ( 𝐵 ·ih 𝐶 ) ) ) |