This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his2sub | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) − ( 𝐵 ·ih 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) | |
| 2 | 1 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih 𝐶 ) ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih 𝐶 ) ) |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 7 | ax-his2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) | |
| 8 | 6 7 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) ) |
| 9 | ax-his3 | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = ( - 1 · ( 𝐵 ·ih 𝐶 ) ) ) | |
| 10 | 4 9 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = ( - 1 · ( 𝐵 ·ih 𝐶 ) ) ) |
| 11 | hicl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih 𝐶 ) ∈ ℂ ) | |
| 12 | 11 | mulm1d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( - 1 · ( 𝐵 ·ih 𝐶 ) ) = - ( 𝐵 ·ih 𝐶 ) ) |
| 13 | 10 12 | eqtrd | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) = - ( 𝐵 ·ih 𝐶 ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) = ( ( 𝐴 ·ih 𝐶 ) + - ( 𝐵 ·ih 𝐶 ) ) ) |
| 15 | 14 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐶 ) + ( ( - 1 ·ℎ 𝐵 ) ·ih 𝐶 ) ) = ( ( 𝐴 ·ih 𝐶 ) + - ( 𝐵 ·ih 𝐶 ) ) ) |
| 16 | 8 15 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + - ( 𝐵 ·ih 𝐶 ) ) ) |
| 17 | hicl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐶 ) ∈ ℂ ) | |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐶 ) ∈ ℂ ) |
| 19 | 11 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih 𝐶 ) ∈ ℂ ) |
| 20 | 18 19 | negsubd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐶 ) + - ( 𝐵 ·ih 𝐶 ) ) = ( ( 𝐴 ·ih 𝐶 ) − ( 𝐵 ·ih 𝐶 ) ) ) |
| 21 | 3 16 20 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) − ( 𝐵 ·ih 𝐶 ) ) ) |