This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjhth.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjhth.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℋ ) | ||
| Assertion | pjhthlem2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjhth.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjhth.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℋ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → 𝐴 ∈ ℋ ) |
| 4 | 1 | cheli | ⊢ ( 𝑥 ∈ 𝐻 → 𝑥 ∈ ℋ ) |
| 5 | 4 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → 𝑥 ∈ ℋ ) |
| 6 | hvsubcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ) |
| 8 | 3 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → 𝐴 ∈ ℋ ) |
| 9 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → 𝑥 ∈ 𝐻 ) | |
| 10 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → 𝑦 ∈ 𝐻 ) | |
| 11 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) | |
| 12 | eqid | ⊢ ( ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) / ( ( 𝑦 ·ih 𝑦 ) + 1 ) ) = ( ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) / ( ( 𝑦 ·ih 𝑦 ) + 1 ) ) | |
| 13 | 1 8 9 10 11 12 | pjhthlem1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) ∧ 𝑦 ∈ 𝐻 ) → ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) |
| 14 | 13 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ∀ 𝑦 ∈ 𝐻 ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) |
| 15 | 1 | chshii | ⊢ 𝐻 ∈ Sℋ |
| 16 | shocel | ⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐻 ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( 𝐴 −ℎ 𝑥 ) ∈ ℋ ∧ ∀ 𝑦 ∈ 𝐻 ( ( 𝐴 −ℎ 𝑥 ) ·ih 𝑦 ) = 0 ) ) |
| 18 | 7 14 17 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 19 | hvpncan3 | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) = 𝐴 ) | |
| 20 | 5 3 19 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) = 𝐴 ) |
| 21 | 20 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → 𝐴 = ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑦 = ( 𝐴 −ℎ 𝑥 ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) ) | |
| 23 | 22 | rspceeqv | ⊢ ( ( ( 𝐴 −ℎ 𝑥 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐴 = ( 𝑥 +ℎ ( 𝐴 −ℎ 𝑥 ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
| 24 | 18 21 23 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐻 ∧ ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
| 25 | df-hba | ⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) | |
| 26 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 27 | 26 | hhvs | ⊢ −ℎ = ( −𝑣 ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 28 | 26 | hhnm | ⊢ normℎ = ( normCV ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 29 | eqid | ⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 30 | 29 15 | hhssba | ⊢ 𝐻 = ( BaseSet ‘ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ) |
| 31 | 26 | hhph | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD |
| 32 | 31 | a1i | ⊢ ( 𝜑 → 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD ) |
| 33 | 26 29 | hhsst | ⊢ ( 𝐻 ∈ Sℋ → 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ) |
| 34 | 15 33 | ax-mp | ⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 35 | 29 1 | hhssbnOLD | ⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ CBan |
| 36 | elin | ⊢ ( 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∩ CBan ) ↔ ( 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∧ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ CBan ) ) | |
| 37 | 34 35 36 | mpbir2an | ⊢ 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∩ CBan ) |
| 38 | 37 | a1i | ⊢ ( 𝜑 → 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 ∈ ( ( SubSp ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) ∩ CBan ) ) |
| 39 | 25 27 28 30 32 38 2 | minveco | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) |
| 40 | reurex | ⊢ ( ∃! 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) | |
| 41 | 39 40 | syl | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐻 ∀ 𝑧 ∈ 𝐻 ( normℎ ‘ ( 𝐴 −ℎ 𝑥 ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝑧 ) ) ) |
| 42 | 24 41 | reximddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |