This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a norm. (Contributed by NM, 12-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normsq | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( normℎ ‘ 𝐴 ) = ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) ) |
| 3 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) | |
| 4 | 3 3 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 ·ih 𝐴 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ↔ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 6 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 7 | 6 | normsqi | ⊢ ( ( normℎ ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↑ 2 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
| 8 | 5 7 | dedth | ⊢ ( 𝐴 ∈ ℋ → ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |