This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition for an inner product to be real. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hire | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( 𝐴 ·ih 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) ∈ ℂ ) | |
| 2 | cjreb | ⊢ ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ) ) |
| 4 | eqcom | ⊢ ( ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) | |
| 5 | 3 4 | bitrdi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 6 | ax-his1 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) |
| 8 | 7 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ↔ ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 9 | 5 8 | bitr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) ∈ ℝ ↔ ( 𝐴 ·ih 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) ) |