This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 13-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his2sub2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 −ℎ 𝐶 ) ) = ( ( 𝐴 ·ih 𝐵 ) − ( 𝐴 ·ih 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | his2sub | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 −ℎ 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) − ( 𝐶 ·ih 𝐴 ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 −ℎ 𝐶 ) ·ih 𝐴 ) ) = ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) − ( 𝐶 ·ih 𝐴 ) ) ) ) |
| 3 | hicl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ih 𝐴 ) ∈ ℂ ) | |
| 4 | hicl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐶 ·ih 𝐴 ) ∈ ℂ ) | |
| 5 | cjsub | ⊢ ( ( ( 𝐵 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝐶 ·ih 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) − ( 𝐶 ·ih 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) − ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) ) → ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) − ( 𝐶 ·ih 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) − ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
| 7 | 6 | 3impdir | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 ·ih 𝐴 ) − ( 𝐶 ·ih 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) − ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
| 8 | 2 7 | eqtrd | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 −ℎ 𝐶 ) ·ih 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) − ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
| 9 | 8 | 3comr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ∗ ‘ ( ( 𝐵 −ℎ 𝐶 ) ·ih 𝐴 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) − ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
| 10 | hvsubcl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) ∈ ℋ ) | |
| 11 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 −ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 −ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐵 −ℎ 𝐶 ) ·ih 𝐴 ) ) ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( 𝐴 ·ih ( 𝐵 −ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐵 −ℎ 𝐶 ) ·ih 𝐴 ) ) ) |
| 13 | 12 | 3impb | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 −ℎ 𝐶 ) ) = ( ∗ ‘ ( ( 𝐵 −ℎ 𝐶 ) ·ih 𝐴 ) ) ) |
| 14 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) | |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐵 ) = ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) ) |
| 16 | ax-his1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) | |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih 𝐶 ) = ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) |
| 18 | 15 17 | oveq12d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) − ( 𝐴 ·ih 𝐶 ) ) = ( ( ∗ ‘ ( 𝐵 ·ih 𝐴 ) ) − ( ∗ ‘ ( 𝐶 ·ih 𝐴 ) ) ) ) |
| 19 | 9 13 18 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 −ℎ 𝐶 ) ) = ( ( 𝐴 ·ih 𝐵 ) − ( 𝐴 ·ih 𝐶 ) ) ) |