This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move scalar multiplication to outside of inner product. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | his35 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | his5 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐶 ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐶 ·ih 𝐷 ) ) ) | |
| 2 | 1 | 3expb | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐶 ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐶 ·ih 𝐷 ) ) ) |
| 3 | 2 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐶 ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐶 ·ih 𝐷 ) ) ) |
| 4 | 3 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐴 · ( 𝐶 ·ih ( 𝐵 ·ℎ 𝐷 ) ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐵 ) · ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 5 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → 𝐴 ∈ ℂ ) | |
| 6 | simprl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → 𝐶 ∈ ℋ ) | |
| 7 | hvmulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐷 ) ∈ ℋ ) | |
| 8 | 7 | ad2ant2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐵 ·ℎ 𝐷 ) ∈ ℋ ) |
| 9 | ax-his3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ ( 𝐵 ·ℎ 𝐷 ) ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( 𝐴 · ( 𝐶 ·ih ( 𝐵 ·ℎ 𝐷 ) ) ) ) | |
| 10 | 5 6 8 9 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( 𝐴 · ( 𝐶 ·ih ( 𝐵 ·ℎ 𝐷 ) ) ) ) |
| 11 | cjcl | ⊢ ( 𝐵 ∈ ℂ → ( ∗ ‘ 𝐵 ) ∈ ℂ ) | |
| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ∗ ‘ 𝐵 ) ∈ ℂ ) |
| 13 | hicl | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( 𝐶 ·ih 𝐷 ) ∈ ℂ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( 𝐶 ·ih 𝐷 ) ∈ ℂ ) |
| 15 | 5 12 14 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) ) = ( 𝐴 · ( ( ∗ ‘ 𝐵 ) · ( 𝐶 ·ih 𝐷 ) ) ) ) |
| 16 | 4 10 15 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 ·ℎ 𝐶 ) ·ih ( 𝐵 ·ℎ 𝐷 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐵 ) ) · ( 𝐶 ·ih 𝐷 ) ) ) |