This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Euler phi function at a prime power. Theorem 2.5(a) in ApostolNT p. 28. (Contributed by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phiprmpw | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ϕ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 2 | nnnn0 | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) | |
| 3 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
| 5 | phival | ⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ → ( ϕ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ϕ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) |
| 7 | nnm1nn0 | ⊢ ( 𝐾 ∈ ℕ → ( 𝐾 − 1 ) ∈ ℕ0 ) | |
| 8 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝐾 − 1 ) ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℕ ) | |
| 9 | 1 7 8 | syl2an | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℕ ) |
| 10 | 9 | nncnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ) |
| 11 | 1 | nncnd | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | subdi | ⊢ ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) ) | |
| 15 | 13 14 | mp3an3 | ⊢ ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) ) |
| 16 | 10 12 15 | syl2anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) ) |
| 17 | 10 | mulridd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 1 ) ) = ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) ) |
| 19 | fzfi | ⊢ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∈ Fin | |
| 20 | ssrab2 | ⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) | |
| 21 | ssfi | ⊢ ( ( ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∈ Fin ∧ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin ) | |
| 22 | 19 20 21 | mp2an | ⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin |
| 23 | ssrab2 | ⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) | |
| 24 | ssfi | ⊢ ( ( ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∈ Fin ∧ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ⊆ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ∈ Fin ) | |
| 25 | 19 23 24 | mp2an | ⊢ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ∈ Fin |
| 26 | inrab | ⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∩ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) } | |
| 27 | elfzelz | ⊢ ( 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) → 𝑥 ∈ ℤ ) | |
| 28 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 29 | rpexp | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) | |
| 30 | 28 29 | syl3an1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
| 31 | 30 | 3expa | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ) ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
| 32 | 31 | an32s | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
| 33 | simpr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 34 | zexpcl | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℤ ) | |
| 35 | 28 2 34 | syl2an | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℤ ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℤ ) |
| 37 | 33 36 | gcdcomd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) ) |
| 38 | 37 | eqeq1d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ( ( 𝑃 ↑ 𝐾 ) gcd 𝑥 ) = 1 ) ) |
| 39 | coprm | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑥 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) | |
| 40 | 39 | adantlr | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑥 ↔ ( 𝑃 gcd 𝑥 ) = 1 ) ) |
| 41 | 32 38 40 | 3bitr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ¬ 𝑃 ∥ 𝑥 ) ) |
| 42 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 43 | 42 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℂ ) |
| 44 | 43 | subid1d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 − 0 ) = 𝑥 ) |
| 45 | 44 | breq2d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( 𝑃 ∥ ( 𝑥 − 0 ) ↔ 𝑃 ∥ 𝑥 ) ) |
| 46 | 45 | notbid | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ¬ 𝑃 ∥ ( 𝑥 − 0 ) ↔ ¬ 𝑃 ∥ 𝑥 ) ) |
| 47 | 41 46 | bitr4d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 48 | 27 47 | sylan2 | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ↔ ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 49 | 48 | biimpd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 → ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 50 | imnan | ⊢ ( ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 → ¬ 𝑃 ∥ ( 𝑥 − 0 ) ) ↔ ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) | |
| 51 | 49 50 | sylib | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 52 | 51 | ralrimiva | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 53 | rabeq0 | ⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) } = ∅ ↔ ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ¬ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) ) | |
| 54 | 52 53 | sylibr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∧ 𝑃 ∥ ( 𝑥 − 0 ) ) } = ∅ ) |
| 55 | 26 54 | eqtrid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∩ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ∅ ) |
| 56 | hashun | ⊢ ( ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin ∧ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ∈ Fin ∧ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∩ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) ) | |
| 57 | 22 25 55 56 | mp3an12i | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) ) |
| 58 | unrab | ⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) } | |
| 59 | 48 | biimprd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ¬ 𝑃 ∥ ( 𝑥 − 0 ) → ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ) ) |
| 60 | 59 | con1d | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ¬ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 → 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 61 | 60 | orrd | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) → ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 62 | 61 | ralrimiva | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) ) |
| 63 | rabid2 | ⊢ ( ( 1 ... ( 𝑃 ↑ 𝐾 ) ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) } ↔ ∀ 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) ) | |
| 64 | 62 63 | sylibr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 1 ... ( 𝑃 ↑ 𝐾 ) ) = { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 ∨ 𝑃 ∥ ( 𝑥 − 0 ) ) } ) |
| 65 | 58 64 | eqtr4id | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) |
| 66 | 65 | fveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ♯ ‘ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) ) |
| 67 | 4 | nnnn0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ0 ) |
| 68 | hashfz1 | ⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) = ( 𝑃 ↑ 𝐾 ) ) | |
| 69 | 67 68 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ) = ( 𝑃 ↑ 𝐾 ) ) |
| 70 | expm1t | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) | |
| 71 | 11 70 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) |
| 72 | 66 69 71 | 3eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∪ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) |
| 73 | 1 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∈ ℕ ) |
| 74 | 1zzd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 1 ∈ ℤ ) | |
| 75 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 76 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 77 | 76 | fveq2i | ⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
| 78 | 75 77 | eqtr4i | ⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
| 79 | 67 78 | eleqtrdi | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
| 80 | 0zd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 0 ∈ ℤ ) | |
| 81 | 73 74 79 80 | hashdvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ( ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) − ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) ) ) |
| 82 | 4 | nncnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℂ ) |
| 83 | 82 | subid1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ 𝐾 ) − 0 ) = ( 𝑃 ↑ 𝐾 ) ) |
| 84 | 83 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) = ( ( 𝑃 ↑ 𝐾 ) / 𝑃 ) ) |
| 85 | 73 | nnne0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ≠ 0 ) |
| 86 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 87 | 86 | adantl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝐾 ∈ ℤ ) |
| 88 | 12 85 87 | expm1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) = ( ( 𝑃 ↑ 𝐾 ) / 𝑃 ) ) |
| 89 | 84 88 | eqtr4d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
| 90 | 89 | fveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) = ( ⌊ ‘ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) ) |
| 91 | 9 | nnzd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℤ ) |
| 92 | flid | ⊢ ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℤ → ( ⌊ ‘ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) | |
| 93 | 91 92 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
| 94 | 90 93 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
| 95 | 76 | oveq1i | ⊢ ( ( 1 − 1 ) − 0 ) = ( 0 − 0 ) |
| 96 | 0m0e0 | ⊢ ( 0 − 0 ) = 0 | |
| 97 | 95 96 | eqtri | ⊢ ( ( 1 − 1 ) − 0 ) = 0 |
| 98 | 97 | oveq1i | ⊢ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) = ( 0 / 𝑃 ) |
| 99 | 12 85 | div0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 0 / 𝑃 ) = 0 ) |
| 100 | 98 99 | eqtrid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) = 0 ) |
| 101 | 100 | fveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) = ( ⌊ ‘ 0 ) ) |
| 102 | 0z | ⊢ 0 ∈ ℤ | |
| 103 | flid | ⊢ ( 0 ∈ ℤ → ( ⌊ ‘ 0 ) = 0 ) | |
| 104 | 102 103 | ax-mp | ⊢ ( ⌊ ‘ 0 ) = 0 |
| 105 | 101 104 | eqtrdi | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) = 0 ) |
| 106 | 94 105 | oveq12d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ⌊ ‘ ( ( ( 𝑃 ↑ 𝐾 ) − 0 ) / 𝑃 ) ) − ( ⌊ ‘ ( ( ( 1 − 1 ) − 0 ) / 𝑃 ) ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) − 0 ) ) |
| 107 | 10 | subid1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) − 0 ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
| 108 | 81 106 107 | 3eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) = ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) |
| 109 | 108 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) ) |
| 110 | hashcl | ⊢ ( { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ∈ Fin → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℕ0 ) | |
| 111 | 22 110 | ax-mp | ⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℕ0 |
| 112 | 111 | nn0cni | ⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℂ |
| 113 | addcom | ⊢ ( ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℂ ∧ ( 𝑃 ↑ ( 𝐾 − 1 ) ) ∈ ℂ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) ) | |
| 114 | 112 10 113 | sylancr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) ) |
| 115 | 109 114 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ 𝑃 ∥ ( 𝑥 − 0 ) } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) ) |
| 116 | 57 72 115 | 3eqtr3rd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) |
| 117 | 10 12 | mulcld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ∈ ℂ ) |
| 118 | 112 | a1i | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ∈ ℂ ) |
| 119 | 117 10 118 | subaddd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ↔ ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) + ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) ) ) |
| 120 | 116 119 | mpbird | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · 𝑃 ) − ( 𝑃 ↑ ( 𝐾 − 1 ) ) ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) ) |
| 121 | 16 18 120 | 3eqtrrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 1 ... ( 𝑃 ↑ 𝐾 ) ) ∣ ( 𝑥 gcd ( 𝑃 ↑ 𝐾 ) ) = 1 } ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) ) |
| 122 | 6 121 | eqtrd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ϕ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( ( 𝑃 ↑ ( 𝐾 − 1 ) ) · ( 𝑃 − 1 ) ) ) |