This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Euler phi function at a prime power. Theorem 2.5(a) in ApostolNT p. 28. (Contributed by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phiprmpw | |- ( ( P e. Prime /\ K e. NN ) -> ( phi ` ( P ^ K ) ) = ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 2 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 3 | nnexpcl | |- ( ( P e. NN /\ K e. NN0 ) -> ( P ^ K ) e. NN ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. NN ) |
| 5 | phival | |- ( ( P ^ K ) e. NN -> ( phi ` ( P ^ K ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) |
|
| 6 | 4 5 | syl | |- ( ( P e. Prime /\ K e. NN ) -> ( phi ` ( P ^ K ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) |
| 7 | nnm1nn0 | |- ( K e. NN -> ( K - 1 ) e. NN0 ) |
|
| 8 | nnexpcl | |- ( ( P e. NN /\ ( K - 1 ) e. NN0 ) -> ( P ^ ( K - 1 ) ) e. NN ) |
|
| 9 | 1 7 8 | syl2an | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) e. NN ) |
| 10 | 9 | nncnd | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) e. CC ) |
| 11 | 1 | nncnd | |- ( P e. Prime -> P e. CC ) |
| 12 | 11 | adantr | |- ( ( P e. Prime /\ K e. NN ) -> P e. CC ) |
| 13 | ax-1cn | |- 1 e. CC |
|
| 14 | subdi | |- ( ( ( P ^ ( K - 1 ) ) e. CC /\ P e. CC /\ 1 e. CC ) -> ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) ) |
|
| 15 | 13 14 | mp3an3 | |- ( ( ( P ^ ( K - 1 ) ) e. CC /\ P e. CC ) -> ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) ) |
| 16 | 10 12 15 | syl2anc | |- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) ) |
| 17 | 10 | mulridd | |- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) x. 1 ) = ( P ^ ( K - 1 ) ) ) |
| 18 | 17 | oveq2d | |- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( P ^ ( K - 1 ) ) ) ) |
| 19 | fzfi | |- ( 1 ... ( P ^ K ) ) e. Fin |
|
| 20 | ssrab2 | |- { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } C_ ( 1 ... ( P ^ K ) ) |
|
| 21 | ssfi | |- ( ( ( 1 ... ( P ^ K ) ) e. Fin /\ { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } C_ ( 1 ... ( P ^ K ) ) ) -> { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin ) |
|
| 22 | 19 20 21 | mp2an | |- { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin |
| 23 | ssrab2 | |- { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } C_ ( 1 ... ( P ^ K ) ) |
|
| 24 | ssfi | |- ( ( ( 1 ... ( P ^ K ) ) e. Fin /\ { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } C_ ( 1 ... ( P ^ K ) ) ) -> { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } e. Fin ) |
|
| 25 | 19 23 24 | mp2an | |- { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } e. Fin |
| 26 | inrab | |- ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } i^i { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) } |
|
| 27 | elfzelz | |- ( x e. ( 1 ... ( P ^ K ) ) -> x e. ZZ ) |
|
| 28 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 29 | rpexp | |- ( ( P e. ZZ /\ x e. ZZ /\ K e. NN ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
|
| 30 | 28 29 | syl3an1 | |- ( ( P e. Prime /\ x e. ZZ /\ K e. NN ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
| 31 | 30 | 3expa | |- ( ( ( P e. Prime /\ x e. ZZ ) /\ K e. NN ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
| 32 | 31 | an32s | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
| 33 | simpr | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 34 | zexpcl | |- ( ( P e. ZZ /\ K e. NN0 ) -> ( P ^ K ) e. ZZ ) |
|
| 35 | 28 2 34 | syl2an | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. ZZ ) |
| 36 | 35 | adantr | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( P ^ K ) e. ZZ ) |
| 37 | 33 36 | gcdcomd | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( x gcd ( P ^ K ) ) = ( ( P ^ K ) gcd x ) ) |
| 38 | 37 | eqeq1d | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> ( ( P ^ K ) gcd x ) = 1 ) ) |
| 39 | coprm | |- ( ( P e. Prime /\ x e. ZZ ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) |
|
| 40 | 39 | adantlr | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) |
| 41 | 32 38 40 | 3bitr4d | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> -. P || x ) ) |
| 42 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 43 | 42 | adantl | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> x e. CC ) |
| 44 | 43 | subid1d | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( x - 0 ) = x ) |
| 45 | 44 | breq2d | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( P || ( x - 0 ) <-> P || x ) ) |
| 46 | 45 | notbid | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( -. P || ( x - 0 ) <-> -. P || x ) ) |
| 47 | 41 46 | bitr4d | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> -. P || ( x - 0 ) ) ) |
| 48 | 27 47 | sylan2 | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> -. P || ( x - 0 ) ) ) |
| 49 | 48 | biimpd | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( ( x gcd ( P ^ K ) ) = 1 -> -. P || ( x - 0 ) ) ) |
| 50 | imnan | |- ( ( ( x gcd ( P ^ K ) ) = 1 -> -. P || ( x - 0 ) ) <-> -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
|
| 51 | 49 50 | sylib | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
| 52 | 51 | ralrimiva | |- ( ( P e. Prime /\ K e. NN ) -> A. x e. ( 1 ... ( P ^ K ) ) -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
| 53 | rabeq0 | |- ( { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) } = (/) <-> A. x e. ( 1 ... ( P ^ K ) ) -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
|
| 54 | 52 53 | sylibr | |- ( ( P e. Prime /\ K e. NN ) -> { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) } = (/) ) |
| 55 | 26 54 | eqtrid | |- ( ( P e. Prime /\ K e. NN ) -> ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } i^i { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = (/) ) |
| 56 | hashun | |- ( ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin /\ { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } e. Fin /\ ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } i^i { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = (/) ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) ) |
|
| 57 | 22 25 55 56 | mp3an12i | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) ) |
| 58 | unrab | |- ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) } |
|
| 59 | 48 | biimprd | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( -. P || ( x - 0 ) -> ( x gcd ( P ^ K ) ) = 1 ) ) |
| 60 | 59 | con1d | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( -. ( x gcd ( P ^ K ) ) = 1 -> P || ( x - 0 ) ) ) |
| 61 | 60 | orrd | |- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) ) |
| 62 | 61 | ralrimiva | |- ( ( P e. Prime /\ K e. NN ) -> A. x e. ( 1 ... ( P ^ K ) ) ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) ) |
| 63 | rabid2 | |- ( ( 1 ... ( P ^ K ) ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) } <-> A. x e. ( 1 ... ( P ^ K ) ) ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) ) |
|
| 64 | 62 63 | sylibr | |- ( ( P e. Prime /\ K e. NN ) -> ( 1 ... ( P ^ K ) ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) } ) |
| 65 | 58 64 | eqtr4id | |- ( ( P e. Prime /\ K e. NN ) -> ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = ( 1 ... ( P ^ K ) ) ) |
| 66 | 65 | fveq2d | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( # ` ( 1 ... ( P ^ K ) ) ) ) |
| 67 | 4 | nnnn0d | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. NN0 ) |
| 68 | hashfz1 | |- ( ( P ^ K ) e. NN0 -> ( # ` ( 1 ... ( P ^ K ) ) ) = ( P ^ K ) ) |
|
| 69 | 67 68 | syl | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( 1 ... ( P ^ K ) ) ) = ( P ^ K ) ) |
| 70 | expm1t | |- ( ( P e. CC /\ K e. NN ) -> ( P ^ K ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
|
| 71 | 11 70 | sylan | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
| 72 | 66 69 71 | 3eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
| 73 | 1 | adantr | |- ( ( P e. Prime /\ K e. NN ) -> P e. NN ) |
| 74 | 1zzd | |- ( ( P e. Prime /\ K e. NN ) -> 1 e. ZZ ) |
|
| 75 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 76 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 77 | 76 | fveq2i | |- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
| 78 | 75 77 | eqtr4i | |- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
| 79 | 67 78 | eleqtrdi | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 80 | 0zd | |- ( ( P e. Prime /\ K e. NN ) -> 0 e. ZZ ) |
|
| 81 | 73 74 79 80 | hashdvds | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = ( ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) - ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) ) ) |
| 82 | 4 | nncnd | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. CC ) |
| 83 | 82 | subid1d | |- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ K ) - 0 ) = ( P ^ K ) ) |
| 84 | 83 | oveq1d | |- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ K ) - 0 ) / P ) = ( ( P ^ K ) / P ) ) |
| 85 | 73 | nnne0d | |- ( ( P e. Prime /\ K e. NN ) -> P =/= 0 ) |
| 86 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 87 | 86 | adantl | |- ( ( P e. Prime /\ K e. NN ) -> K e. ZZ ) |
| 88 | 12 85 87 | expm1d | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) = ( ( P ^ K ) / P ) ) |
| 89 | 84 88 | eqtr4d | |- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ K ) - 0 ) / P ) = ( P ^ ( K - 1 ) ) ) |
| 90 | 89 | fveq2d | |- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) = ( |_ ` ( P ^ ( K - 1 ) ) ) ) |
| 91 | 9 | nnzd | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) e. ZZ ) |
| 92 | flid | |- ( ( P ^ ( K - 1 ) ) e. ZZ -> ( |_ ` ( P ^ ( K - 1 ) ) ) = ( P ^ ( K - 1 ) ) ) |
|
| 93 | 91 92 | syl | |- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( P ^ ( K - 1 ) ) ) = ( P ^ ( K - 1 ) ) ) |
| 94 | 90 93 | eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) = ( P ^ ( K - 1 ) ) ) |
| 95 | 76 | oveq1i | |- ( ( 1 - 1 ) - 0 ) = ( 0 - 0 ) |
| 96 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 97 | 95 96 | eqtri | |- ( ( 1 - 1 ) - 0 ) = 0 |
| 98 | 97 | oveq1i | |- ( ( ( 1 - 1 ) - 0 ) / P ) = ( 0 / P ) |
| 99 | 12 85 | div0d | |- ( ( P e. Prime /\ K e. NN ) -> ( 0 / P ) = 0 ) |
| 100 | 98 99 | eqtrid | |- ( ( P e. Prime /\ K e. NN ) -> ( ( ( 1 - 1 ) - 0 ) / P ) = 0 ) |
| 101 | 100 | fveq2d | |- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) = ( |_ ` 0 ) ) |
| 102 | 0z | |- 0 e. ZZ |
|
| 103 | flid | |- ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) |
|
| 104 | 102 103 | ax-mp | |- ( |_ ` 0 ) = 0 |
| 105 | 101 104 | eqtrdi | |- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) = 0 ) |
| 106 | 94 105 | oveq12d | |- ( ( P e. Prime /\ K e. NN ) -> ( ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) - ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) ) = ( ( P ^ ( K - 1 ) ) - 0 ) ) |
| 107 | 10 | subid1d | |- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) - 0 ) = ( P ^ ( K - 1 ) ) ) |
| 108 | 81 106 107 | 3eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = ( P ^ ( K - 1 ) ) ) |
| 109 | 108 | oveq2d | |- ( ( P e. Prime /\ K e. NN ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( P ^ ( K - 1 ) ) ) ) |
| 110 | hashcl | |- ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. NN0 ) |
|
| 111 | 22 110 | ax-mp | |- ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. NN0 |
| 112 | 111 | nn0cni | |- ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. CC |
| 113 | addcom | |- ( ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. CC /\ ( P ^ ( K - 1 ) ) e. CC ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( P ^ ( K - 1 ) ) ) = ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) ) |
|
| 114 | 112 10 113 | sylancr | |- ( ( P e. Prime /\ K e. NN ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( P ^ ( K - 1 ) ) ) = ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) ) |
| 115 | 109 114 | eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) ) |
| 116 | 57 72 115 | 3eqtr3rd | |- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
| 117 | 10 12 | mulcld | |- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) x. P ) e. CC ) |
| 118 | 112 | a1i | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. CC ) |
| 119 | 117 10 118 | subaddd | |- ( ( P e. Prime /\ K e. NN ) -> ( ( ( ( P ^ ( K - 1 ) ) x. P ) - ( P ^ ( K - 1 ) ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) <-> ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) = ( ( P ^ ( K - 1 ) ) x. P ) ) ) |
| 120 | 116 119 | mpbird | |- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ ( K - 1 ) ) x. P ) - ( P ^ ( K - 1 ) ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) |
| 121 | 16 18 120 | 3eqtrrd | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) = ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) ) |
| 122 | 6 121 | eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> ( phi ` ( P ^ K ) ) = ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) ) |