This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phival | ⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 gcd 𝑛 ) = ( 𝑥 gcd 𝑁 ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝑥 gcd 𝑛 ) = 1 ↔ ( 𝑥 gcd 𝑁 ) = 1 ) ) |
| 4 | 1 3 | rabeqbidv | ⊢ ( 𝑛 = 𝑁 → { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } = { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑛 = 𝑁 → ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |
| 6 | df-phi | ⊢ ϕ = ( 𝑛 ∈ ℕ ↦ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑛 ) ∣ ( 𝑥 gcd 𝑛 ) = 1 } ) ) | |
| 7 | fvex | ⊢ ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ∈ V | |
| 8 | 5 6 7 | fvmpt | ⊢ ( 𝑁 ∈ ℕ → ( ϕ ‘ 𝑁 ) = ( ♯ ‘ { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ) ) |