This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in ApostolNT p. 17. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprm | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) | |
| 2 | gcddvds | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ∧ ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ∧ ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 4 | 3 | simprd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ) |
| 5 | breq1 | ⊢ ( ( 𝑃 gcd 𝑁 ) = 𝑃 → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑁 ↔ 𝑃 ∥ 𝑁 ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) = 𝑃 → 𝑃 ∥ 𝑁 ) ) |
| 7 | 6 | con3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 → ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) |
| 8 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 9 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 10 | eleq1 | ⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℕ ↔ 0 ∈ ℕ ) ) | |
| 11 | 9 10 | syl5ibcom | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 = 0 → 0 ∈ ℕ ) ) |
| 12 | 8 11 | mtoi | ⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 = 0 ) |
| 13 | 12 | intnanrd | ⊢ ( 𝑃 ∈ ℙ → ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) |
| 15 | gcdn0cl | ⊢ ( ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) | |
| 16 | 15 | ex | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) ) |
| 17 | 1 16 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) ) |
| 18 | 14 17 | mpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∈ ℕ ) |
| 19 | 3 | simpld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ) |
| 20 | isprm2 | ⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) ) | |
| 21 | 20 | simprbi | ⊢ ( 𝑃 ∈ ℙ → ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ) |
| 22 | breq1 | ⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( 𝑧 ∥ 𝑃 ↔ ( 𝑃 gcd 𝑁 ) ∥ 𝑃 ) ) | |
| 23 | eqeq1 | ⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( 𝑧 = 1 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) | |
| 24 | eqeq1 | ⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( 𝑧 = 𝑃 ↔ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) | |
| 25 | 23 24 | orbi12d | ⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ↔ ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) |
| 26 | 22 25 | imbi12d | ⊢ ( 𝑧 = ( 𝑃 gcd 𝑁 ) → ( ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) ↔ ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
| 27 | 26 | rspcv | ⊢ ( ( 𝑃 gcd 𝑁 ) ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 ∥ 𝑃 → ( 𝑧 = 1 ∨ 𝑧 = 𝑃 ) ) → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
| 28 | 21 27 | syl5com | ⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 gcd 𝑁 ) ∈ ℕ → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) ∈ ℕ → ( ( 𝑃 gcd 𝑁 ) ∥ 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) ) |
| 30 | 18 19 29 | mp2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) |
| 31 | biorf | ⊢ ( ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ↔ ( ( 𝑃 gcd 𝑁 ) = 𝑃 ∨ ( 𝑃 gcd 𝑁 ) = 1 ) ) ) | |
| 32 | orcom | ⊢ ( ( ( 𝑃 gcd 𝑁 ) = 𝑃 ∨ ( 𝑃 gcd 𝑁 ) = 1 ) ↔ ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) | |
| 33 | 31 32 | bitrdi | ⊢ ( ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 → ( ( 𝑃 gcd 𝑁 ) = 1 ↔ ( ( 𝑃 gcd 𝑁 ) = 1 ∨ ( 𝑃 gcd 𝑁 ) = 𝑃 ) ) ) |
| 34 | 30 33 | syl5ibrcom | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 gcd 𝑁 ) = 𝑃 → ( 𝑃 gcd 𝑁 ) = 1 ) ) |
| 35 | 7 34 | syld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 → ( 𝑃 gcd 𝑁 ) = 1 ) ) |
| 36 | iddvds | ⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) | |
| 37 | 1 36 | syl | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∥ 𝑃 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 𝑃 ∥ 𝑃 ) |
| 39 | dvdslegcd | ⊢ ( ( ( 𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) | |
| 40 | 39 | ex | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) ) |
| 41 | 40 | 3anidm12 | ⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) ) |
| 42 | 1 41 | sylan | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑃 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) ) |
| 43 | 14 42 | mpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁 ) → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) |
| 44 | 38 43 | mpand | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 → 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) ) |
| 45 | prmgt1 | ⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) | |
| 46 | 45 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 1 < 𝑃 ) |
| 47 | 1re | ⊢ 1 ∈ ℝ | |
| 48 | 1 | zred | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 49 | 18 | nnred | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 gcd 𝑁 ) ∈ ℝ ) |
| 50 | ltletr | ⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 𝑃 gcd 𝑁 ) ∈ ℝ ) → ( ( 1 < 𝑃 ∧ 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) → 1 < ( 𝑃 gcd 𝑁 ) ) ) | |
| 51 | 47 48 49 50 | mp3an2ani | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 1 < 𝑃 ∧ 𝑃 ≤ ( 𝑃 gcd 𝑁 ) ) → 1 < ( 𝑃 gcd 𝑁 ) ) ) |
| 52 | 46 51 | mpand | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ≤ ( 𝑃 gcd 𝑁 ) → 1 < ( 𝑃 gcd 𝑁 ) ) ) |
| 53 | ltne | ⊢ ( ( 1 ∈ ℝ ∧ 1 < ( 𝑃 gcd 𝑁 ) ) → ( 𝑃 gcd 𝑁 ) ≠ 1 ) | |
| 54 | 47 53 | mpan | ⊢ ( 1 < ( 𝑃 gcd 𝑁 ) → ( 𝑃 gcd 𝑁 ) ≠ 1 ) |
| 55 | 54 | a1i | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 1 < ( 𝑃 gcd 𝑁 ) → ( 𝑃 gcd 𝑁 ) ≠ 1 ) ) |
| 56 | 44 52 55 | 3syld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 ∥ 𝑁 → ( 𝑃 gcd 𝑁 ) ≠ 1 ) ) |
| 57 | 56 | necon2bd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑃 gcd 𝑁 ) = 1 → ¬ 𝑃 ∥ 𝑁 ) ) |
| 58 | 35 57 | impbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝑁 ↔ ( 𝑃 gcd 𝑁 ) = 1 ) ) |