This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 2 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 4 | 1 | leidd | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ≤ 𝐴 ) |
| 5 | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ≤ 𝐴 ↔ 𝐴 ≤ ( ⌊ ‘ 𝐴 ) ) ) | |
| 6 | 1 5 | mpancom | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≤ 𝐴 ↔ 𝐴 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ≤ ( ⌊ ‘ 𝐴 ) ) |
| 8 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 1 8 | syl | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 10 | 9 1 | letri3d | ⊢ ( 𝐴 ∈ ℤ → ( ( ⌊ ‘ 𝐴 ) = 𝐴 ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ 𝐴 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) |
| 11 | 3 7 10 | mpbir2and | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |