This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation in terms of predecessor exponent. (Contributed by NM, 19-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expm1t | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 5 | 4 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 7 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 8 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |
| 10 | 6 9 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ ( 𝑁 − 1 ) ) · 𝐴 ) ) |