This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcmpt.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) | |
| pcmpt.2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) | ||
| pcmpt.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| pcmpt.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| pcmpt.5 | ⊢ ( 𝑛 = 𝑃 → 𝐴 = 𝐵 ) | ||
| Assertion | pcmpt | ⊢ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) | |
| 2 | pcmpt.2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) | |
| 3 | pcmpt.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 4 | pcmpt.4 | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | pcmpt.5 | ⊢ ( 𝑛 = 𝑃 → 𝐴 = 𝐵 ) | |
| 6 | fveq2 | ⊢ ( 𝑝 = 1 → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑝 = 1 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 8 | breq2 | ⊢ ( 𝑝 = 1 → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 1 ) ) | |
| 9 | 8 | ifbid | ⊢ ( 𝑝 = 1 → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑝 = 1 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑝 = 1 → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑝 = 𝑘 → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑝 = 𝑘 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
| 14 | breq2 | ⊢ ( 𝑝 = 𝑘 → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 𝑘 ) ) | |
| 15 | 14 | ifbid | ⊢ ( 𝑝 = 𝑘 → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑝 = 𝑘 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑝 = 𝑘 → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 20 | breq2 | ⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ ( 𝑘 + 1 ) ) ) | |
| 21 | 20 | ifbid | ⊢ ( 𝑝 = ( 𝑘 + 1 ) → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) |
| 22 | 19 21 | eqeq12d | ⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
| 23 | 22 | imbi2d | ⊢ ( 𝑝 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
| 24 | fveq2 | ⊢ ( 𝑝 = 𝑁 → ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑝 = 𝑁 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) ) |
| 26 | breq2 | ⊢ ( 𝑝 = 𝑁 → ( 𝑃 ≤ 𝑝 ↔ 𝑃 ≤ 𝑁 ) ) | |
| 27 | 26 | ifbid | ⊢ ( 𝑝 = 𝑁 → if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) |
| 28 | 25 27 | eqeq12d | ⊢ ( 𝑝 = 𝑁 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) ) |
| 29 | 28 | imbi2d | ⊢ ( 𝑝 = 𝑁 → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑝 ) ) = if ( 𝑃 ≤ 𝑝 , 𝐵 , 0 ) ) ↔ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) ) ) |
| 30 | 1z | ⊢ 1 ∈ ℤ | |
| 31 | seq1 | ⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) | |
| 32 | 30 31 | ax-mp | ⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
| 33 | 1nn | ⊢ 1 ∈ ℕ | |
| 34 | 1nprm | ⊢ ¬ 1 ∈ ℙ | |
| 35 | eleq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ℙ ↔ 1 ∈ ℙ ) ) | |
| 36 | 34 35 | mtbiri | ⊢ ( 𝑛 = 1 → ¬ 𝑛 ∈ ℙ ) |
| 37 | 36 | iffalsed | ⊢ ( 𝑛 = 1 → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = 1 ) |
| 38 | 1ex | ⊢ 1 ∈ V | |
| 39 | 37 1 38 | fvmpt | ⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) = 1 ) |
| 40 | 33 39 | ax-mp | ⊢ ( 𝐹 ‘ 1 ) = 1 |
| 41 | 32 40 | eqtri | ⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = 1 |
| 42 | 41 | oveq2i | ⊢ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( 𝑃 pCnt 1 ) |
| 43 | pc1 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) | |
| 44 | 42 43 | eqtrid | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = 0 ) |
| 45 | prmgt1 | ⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) | |
| 46 | 1re | ⊢ 1 ∈ ℝ | |
| 47 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 48 | eluzelre | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) | |
| 49 | 47 48 | syl | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 50 | ltnle | ⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℝ ) → ( 1 < 𝑃 ↔ ¬ 𝑃 ≤ 1 ) ) | |
| 51 | 46 49 50 | sylancr | ⊢ ( 𝑃 ∈ ℙ → ( 1 < 𝑃 ↔ ¬ 𝑃 ≤ 1 ) ) |
| 52 | 45 51 | mpbid | ⊢ ( 𝑃 ∈ ℙ → ¬ 𝑃 ≤ 1 ) |
| 53 | 52 | iffalsed | ⊢ ( 𝑃 ∈ ℙ → if ( 𝑃 ≤ 1 , 𝐵 , 0 ) = 0 ) |
| 54 | 44 53 | eqtr4d | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) |
| 55 | 4 54 | syl | ⊢ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = if ( 𝑃 ≤ 1 , 𝐵 , 0 ) ) |
| 56 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ∈ ℙ ) |
| 57 | 1 2 | pcmptcl | ⊢ ( 𝜑 → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |
| 58 | 57 | simpld | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℕ ) |
| 59 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 60 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) | |
| 61 | 58 59 60 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 62 | 61 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 63 | 56 62 | pccld | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℕ0 ) |
| 64 | 63 | nn0cnd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 65 | 64 | addlidd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 66 | 59 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 67 | ovex | ⊢ ( 𝑛 ↑ 𝐴 ) ∈ V | |
| 68 | 67 38 | ifex | ⊢ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V |
| 69 | 68 | csbex | ⊢ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V |
| 70 | 1 | fvmpts | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) |
| 71 | ovex | ⊢ ( 𝑘 + 1 ) ∈ V | |
| 72 | nfv | ⊢ Ⅎ 𝑛 ( 𝑘 + 1 ) ∈ ℙ | |
| 73 | nfcv | ⊢ Ⅎ 𝑛 ( 𝑘 + 1 ) | |
| 74 | nfcv | ⊢ Ⅎ 𝑛 ↑ | |
| 75 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 | |
| 76 | 73 74 75 | nfov | ⊢ Ⅎ 𝑛 ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) |
| 77 | nfcv | ⊢ Ⅎ 𝑛 1 | |
| 78 | 72 76 77 | nfif | ⊢ Ⅎ 𝑛 if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) |
| 79 | eleq1 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 ∈ ℙ ↔ ( 𝑘 + 1 ) ∈ ℙ ) ) | |
| 80 | id | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝑛 = ( 𝑘 + 1 ) ) | |
| 81 | csbeq1a | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝐴 = ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) | |
| 82 | 80 81 | oveq12d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 ↑ 𝐴 ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 83 | 79 82 | ifbieq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
| 84 | 71 78 83 | csbief | ⊢ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) |
| 85 | 70 84 | eqtrdi | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ V ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
| 86 | 66 69 85 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
| 87 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑘 + 1 ) = 𝑃 ) | |
| 88 | 87 56 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℙ ) |
| 89 | 88 | iftrued | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 90 | 87 | csbeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 = ⦋ 𝑃 / 𝑛 ⦌ 𝐴 ) |
| 91 | nfcvd | ⊢ ( 𝑃 ∈ ℙ → Ⅎ 𝑛 𝐵 ) | |
| 92 | 91 5 | csbiegf | ⊢ ( 𝑃 ∈ ℙ → ⦋ 𝑃 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 93 | 56 92 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ⦋ 𝑃 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 94 | 90 93 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 95 | 87 94 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) = ( 𝑃 ↑ 𝐵 ) ) |
| 96 | 86 89 95 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ↑ 𝐵 ) ) |
| 97 | 96 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt ( 𝑃 ↑ 𝐵 ) ) ) |
| 98 | 5 | eleq1d | ⊢ ( 𝑛 = 𝑃 → ( 𝐴 ∈ ℕ0 ↔ 𝐵 ∈ ℕ0 ) ) |
| 99 | 98 | rspcv | ⊢ ( 𝑃 ∈ ℙ → ( ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → 𝐵 ∈ ℕ0 ) ) |
| 100 | 4 2 99 | sylc | ⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
| 101 | 100 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝐵 ∈ ℕ0 ) |
| 102 | pcidlem | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐵 ) ) = 𝐵 ) | |
| 103 | 56 101 102 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐵 ) ) = 𝐵 ) |
| 104 | 65 97 103 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) |
| 105 | oveq1 | ⊢ ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) | |
| 106 | 105 | eqeq1d | ⊢ ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 → ( ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ↔ ( 0 + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) ) |
| 107 | 104 106 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) ) |
| 108 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 109 | 108 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑘 ∈ ℝ ) |
| 110 | ltp1 | ⊢ ( 𝑘 ∈ ℝ → 𝑘 < ( 𝑘 + 1 ) ) | |
| 111 | peano2re | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) | |
| 112 | ltnle | ⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ) → ( 𝑘 < ( 𝑘 + 1 ) ↔ ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) ) | |
| 113 | 111 112 | mpdan | ⊢ ( 𝑘 ∈ ℝ → ( 𝑘 < ( 𝑘 + 1 ) ↔ ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) ) |
| 114 | 110 113 | mpbid | ⊢ ( 𝑘 ∈ ℝ → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
| 115 | 109 114 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ¬ ( 𝑘 + 1 ) ≤ 𝑘 ) |
| 116 | 87 | breq1d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑘 + 1 ) ≤ 𝑘 ↔ 𝑃 ≤ 𝑘 ) ) |
| 117 | 115 116 | mtbid | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ¬ 𝑃 ≤ 𝑘 ) |
| 118 | 117 | iffalsed | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) = 0 ) |
| 119 | 118 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = 0 ) ) |
| 120 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) | |
| 121 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 122 | 120 121 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 123 | seqp1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 124 | 122 123 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 125 | 124 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 126 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
| 127 | 57 | simprd | ⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
| 128 | 127 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ ) |
| 129 | nnz | ⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ) | |
| 130 | nnne0 | ⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) | |
| 131 | 129 130 | jca | ⊢ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) ) |
| 132 | 128 131 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) ) |
| 133 | nnz | ⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) | |
| 134 | nnne0 | ⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) | |
| 135 | 133 134 | jca | ⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) ) |
| 136 | 61 135 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) ) |
| 137 | pcmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℤ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ≠ 0 ) ∧ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) | |
| 138 | 126 132 136 137 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 pCnt ( ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) · ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 139 | 125 138 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 140 | 139 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 141 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 142 | 4 141 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 143 | 142 | nnred | ⊢ ( 𝜑 → 𝑃 ∈ ℝ ) |
| 144 | 143 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ∈ ℝ ) |
| 145 | 144 | leidd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ≤ 𝑃 ) |
| 146 | 145 87 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → 𝑃 ≤ ( 𝑘 + 1 ) ) |
| 147 | 146 | iftrued | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) = 𝐵 ) |
| 148 | 140 147 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ↔ ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = 𝐵 ) ) |
| 149 | 107 119 148 | 3imtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) = 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
| 150 | 149 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) = 𝑃 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
| 151 | 139 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 152 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑘 + 1 ) ≠ 𝑃 ) | |
| 153 | 152 | necomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → 𝑃 ≠ ( 𝑘 + 1 ) ) |
| 154 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → 𝑃 ∈ ℙ ) |
| 155 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑘 + 1 ) ∈ ℙ ) | |
| 156 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) |
| 157 | 75 | nfel1 | ⊢ Ⅎ 𝑛 ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 |
| 158 | 81 | eleq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐴 ∈ ℕ0 ↔ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) ) |
| 159 | 157 158 | rspc | ⊢ ( ( 𝑘 + 1 ) ∈ ℙ → ( ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) ) |
| 160 | 155 156 159 | sylc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) |
| 161 | prmdvdsexpr | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑘 + 1 ) ∈ ℙ ∧ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ∈ ℕ0 ) → ( 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) → 𝑃 = ( 𝑘 + 1 ) ) ) | |
| 162 | 154 155 160 161 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) → 𝑃 = ( 𝑘 + 1 ) ) ) |
| 163 | 162 | necon3ad | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 ≠ ( 𝑘 + 1 ) → ¬ 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
| 164 | 153 163 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ¬ 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 165 | 59 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 166 | 165 69 85 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) ) |
| 167 | iftrue | ⊢ ( ( 𝑘 + 1 ) ∈ ℙ → if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) | |
| 168 | 166 167 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) |
| 169 | 168 | breq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ 𝑃 ∥ ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) ) ) |
| 170 | 164 169 | mtbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ¬ 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 171 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝐹 : ℕ ⟶ ℕ ) |
| 172 | 171 165 60 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 173 | 172 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 174 | pceq0 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) → ( ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ↔ ¬ 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 175 | 154 173 174 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ↔ ¬ 𝑃 ∥ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 176 | 170 175 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
| 177 | iffalse | ⊢ ( ¬ ( 𝑘 + 1 ) ∈ ℙ → if ( ( 𝑘 + 1 ) ∈ ℙ , ( ( 𝑘 + 1 ) ↑ ⦋ ( 𝑘 + 1 ) / 𝑛 ⦌ 𝐴 ) , 1 ) = 1 ) | |
| 178 | 166 177 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 1 ) |
| 179 | 178 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt 1 ) ) |
| 180 | 4 43 | syl | ⊢ ( 𝜑 → ( 𝑃 pCnt 1 ) = 0 ) |
| 181 | 180 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt 1 ) = 0 ) |
| 182 | 179 181 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ∧ ¬ ( 𝑘 + 1 ) ∈ ℙ ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
| 183 | 176 182 | pm2.61dan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = 0 ) |
| 184 | 183 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + ( 𝑃 pCnt ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + 0 ) ) |
| 185 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑃 ∈ ℙ ) |
| 186 | 128 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ∈ ℕ ) |
| 187 | 185 186 | pccld | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ∈ ℕ0 ) |
| 188 | 187 | nn0cnd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ∈ ℂ ) |
| 189 | 188 | addridd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) + 0 ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
| 190 | 151 184 189 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) ) |
| 191 | 142 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑃 ∈ ℕ ) |
| 192 | 191 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑃 ∈ ℝ ) |
| 193 | 165 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 194 | 192 193 | ltlend | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 < ( 𝑘 + 1 ) ↔ ( 𝑃 ≤ ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ) |
| 195 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → 𝑘 ∈ ℕ ) | |
| 196 | nnleltp1 | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ≤ 𝑘 ↔ 𝑃 < ( 𝑘 + 1 ) ) ) | |
| 197 | 191 195 196 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 ≤ 𝑘 ↔ 𝑃 < ( 𝑘 + 1 ) ) ) |
| 198 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑘 + 1 ) ≠ 𝑃 ) | |
| 199 | 198 | biantrud | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 ≤ ( 𝑘 + 1 ) ↔ ( 𝑃 ≤ ( 𝑘 + 1 ) ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) ) |
| 200 | 194 197 199 | 3bitr4rd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( 𝑃 ≤ ( 𝑘 + 1 ) ↔ 𝑃 ≤ 𝑘 ) ) |
| 201 | 200 | ifbid | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) |
| 202 | 190 201 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ↔ ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) ) |
| 203 | 202 | biimprd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ≠ 𝑃 ) ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
| 204 | 203 | expr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) ≠ 𝑃 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
| 205 | 150 204 | pm2.61dne | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) |
| 206 | 205 | expcom | ⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
| 207 | 206 | a2d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑘 ) ) = if ( 𝑃 ≤ 𝑘 , 𝐵 , 0 ) ) → ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = if ( 𝑃 ≤ ( 𝑘 + 1 ) , 𝐵 , 0 ) ) ) ) |
| 208 | 11 17 23 29 55 207 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) ) |
| 209 | 3 208 | mpcom | ⊢ ( 𝜑 → ( 𝑃 pCnt ( seq 1 ( · , 𝐹 ) ‘ 𝑁 ) ) = if ( 𝑃 ≤ 𝑁 , 𝐵 , 0 ) ) |