This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Fan Zheng, 3-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1nprm | ⊢ ¬ 1 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | ⊢ 1 ∈ ℕ | |
| 2 | eleq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 ∈ ℕ ↔ 1 ∈ ℕ ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝑧 = 1 → 𝑧 ∈ ℕ ) |
| 4 | nnnn0 | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℕ0 ) | |
| 5 | dvds1 | ⊢ ( 𝑧 ∈ ℕ0 → ( 𝑧 ∥ 1 ↔ 𝑧 = 1 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 ∥ 1 ↔ 𝑧 = 1 ) ) |
| 7 | 6 | bicomd | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ↔ 𝑧 ∥ 1 ) ) |
| 8 | 3 7 | biadanii | ⊢ ( 𝑧 = 1 ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 1 ) ) |
| 9 | velsn | ⊢ ( 𝑧 ∈ { 1 } ↔ 𝑧 = 1 ) | |
| 10 | breq1 | ⊢ ( 𝑛 = 𝑧 → ( 𝑛 ∥ 1 ↔ 𝑧 ∥ 1 ) ) | |
| 11 | 10 | elrab | ⊢ ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ↔ ( 𝑧 ∈ ℕ ∧ 𝑧 ∥ 1 ) ) |
| 12 | 8 9 11 | 3bitr4ri | ⊢ ( 𝑧 ∈ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ↔ 𝑧 ∈ { 1 } ) |
| 13 | 12 | eqriv | ⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } = { 1 } |
| 14 | 1ex | ⊢ 1 ∈ V | |
| 15 | 14 | ensn1 | ⊢ { 1 } ≈ 1o |
| 16 | 13 15 | eqbrtri | ⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 1o |
| 17 | 1sdom2 | ⊢ 1o ≺ 2o | |
| 18 | ensdomtr | ⊢ ( ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 1o ∧ 1o ≺ 2o ) → { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o ) | |
| 19 | 16 17 18 | mp2an | ⊢ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o |
| 20 | sdomnen | ⊢ ( { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≺ 2o → ¬ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) | |
| 21 | 19 20 | ax-mp | ⊢ ¬ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o |
| 22 | isprm | ⊢ ( 1 ∈ ℙ ↔ ( 1 ∈ ℕ ∧ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) ) | |
| 23 | 1 22 | mpbiran | ⊢ ( 1 ∈ ℙ ↔ { 𝑛 ∈ ℕ ∣ 𝑛 ∥ 1 } ≈ 2o ) |
| 24 | 21 23 | mtbir | ⊢ ¬ 1 ∈ ℙ |