This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbiegf.1 | ⊢ ( 𝐴 ∈ 𝑉 → Ⅎ 𝑥 𝐶 ) | |
| csbiegf.2 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | ||
| Assertion | csbiegf | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiegf.1 | ⊢ ( 𝐴 ∈ 𝑉 → Ⅎ 𝑥 𝐶 ) | |
| 2 | csbiegf.2 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
| 3 | 2 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) |
| 4 | csbiebt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) | |
| 5 | 1 4 | mpdan | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 6 | 3 5 | mpbii | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |