This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcidlem | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) | |
| 2 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 4 | simpr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℕ0 ) | |
| 5 | 3 4 | nnexpcld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) |
| 6 | 1 5 | pccld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ0 ) |
| 7 | 6 | nn0red | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℝ ) |
| 8 | 7 | leidd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
| 9 | 5 | nnzd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
| 10 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) | |
| 11 | 1 9 6 10 | syl3anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 12 | 8 11 | mpbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 13 | 3 6 | nnexpcld | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℕ ) |
| 14 | 13 | nnzd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ ) |
| 15 | dvdsle | ⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) | |
| 16 | 14 5 15 | syl2anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
| 17 | 12 16 | mpd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) |
| 18 | 3 | nnred | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 19 | 6 | nn0zd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℤ ) |
| 20 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
| 22 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 23 | eluz2gt1 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) | |
| 24 | 1 22 23 | 3syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 1 < 𝑃 ) |
| 25 | 18 19 21 24 | leexp2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
| 26 | 17 25 | mpbird | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ) |
| 27 | iddvds | ⊢ ( ( 𝑃 ↑ 𝐴 ) ∈ ℤ → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) | |
| 28 | 9 27 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 29 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) | |
| 30 | 1 9 4 29 | syl3anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 31 | 28 30 | mpbird | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
| 32 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 34 | 7 33 | letri3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ↔ ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ) ) |
| 35 | 26 31 34 | mpbir2and | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |