This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcmpt.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) | |
| pcmpt.2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) | ||
| Assertion | pcmptcl | ⊢ ( 𝜑 → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ) | |
| 2 | pcmpt.2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 ) | |
| 3 | pm2.27 | ⊢ ( 𝑛 ∈ ℙ → ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℕ0 ) ) | |
| 4 | iftrue | ⊢ ( 𝑛 ∈ ℙ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = ( 𝑛 ↑ 𝐴 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = ( 𝑛 ↑ 𝐴 ) ) |
| 6 | prmnn | ⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ℕ ) | |
| 7 | nnexpcl | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑛 ↑ 𝐴 ) ∈ ℕ ) | |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑛 ↑ 𝐴 ) ∈ ℕ ) |
| 9 | 5 8 | eqeltrd | ⊢ ( ( 𝑛 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
| 10 | 9 | ex | ⊢ ( 𝑛 ∈ ℙ → ( 𝐴 ∈ ℕ0 → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
| 11 | 3 10 | syld | ⊢ ( 𝑛 ∈ ℙ → ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
| 12 | iffalse | ⊢ ( ¬ 𝑛 ∈ ℙ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) = 1 ) | |
| 13 | 1nn | ⊢ 1 ∈ ℕ | |
| 14 | 12 13 | eqeltrdi | ⊢ ( ¬ 𝑛 ∈ ℙ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
| 15 | 14 | a1d | ⊢ ( ¬ 𝑛 ∈ ℙ → ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
| 16 | 11 15 | pm2.61i | ⊢ ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
| 17 | 16 | a1d | ⊢ ( ( 𝑛 ∈ ℙ → 𝐴 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) ) |
| 18 | 17 | ralimi2 | ⊢ ( ∀ 𝑛 ∈ ℙ 𝐴 ∈ ℕ0 → ∀ 𝑛 ∈ ℕ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
| 19 | 2 18 | syl | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ) |
| 20 | 1 | fmpt | ⊢ ( ∀ 𝑛 ∈ ℕ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ 𝐴 ) , 1 ) ∈ ℕ ↔ 𝐹 : ℕ ⟶ ℕ ) |
| 21 | 19 20 | sylib | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℕ ) |
| 22 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 23 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 24 | 21 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ ) |
| 25 | nnmulcl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑘 · 𝑝 ) ∈ ℕ ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ ∧ 𝑝 ∈ ℕ ) ) → ( 𝑘 · 𝑝 ) ∈ ℕ ) |
| 27 | 22 23 24 26 | seqf | ⊢ ( 𝜑 → seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) |
| 28 | 21 27 | jca | ⊢ ( 𝜑 → ( 𝐹 : ℕ ⟶ ℕ ∧ seq 1 ( · , 𝐹 ) : ℕ ⟶ ℕ ) ) |