This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcmpt.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
|
| pcmpt.2 | |- ( ph -> A. n e. Prime A e. NN0 ) |
||
| pcmpt.3 | |- ( ph -> N e. NN ) |
||
| pcmpt.4 | |- ( ph -> P e. Prime ) |
||
| pcmpt.5 | |- ( n = P -> A = B ) |
||
| Assertion | pcmpt | |- ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.1 | |- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
|
| 2 | pcmpt.2 | |- ( ph -> A. n e. Prime A e. NN0 ) |
|
| 3 | pcmpt.3 | |- ( ph -> N e. NN ) |
|
| 4 | pcmpt.4 | |- ( ph -> P e. Prime ) |
|
| 5 | pcmpt.5 | |- ( n = P -> A = B ) |
|
| 6 | fveq2 | |- ( p = 1 -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` 1 ) ) |
|
| 7 | 6 | oveq2d | |- ( p = 1 -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) ) |
| 8 | breq2 | |- ( p = 1 -> ( P <_ p <-> P <_ 1 ) ) |
|
| 9 | 8 | ifbid | |- ( p = 1 -> if ( P <_ p , B , 0 ) = if ( P <_ 1 , B , 0 ) ) |
| 10 | 7 9 | eqeq12d | |- ( p = 1 -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) ) |
| 11 | 10 | imbi2d | |- ( p = 1 -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) ) ) |
| 12 | fveq2 | |- ( p = k -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` k ) ) |
|
| 13 | 12 | oveq2d | |- ( p = k -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
| 14 | breq2 | |- ( p = k -> ( P <_ p <-> P <_ k ) ) |
|
| 15 | 14 | ifbid | |- ( p = k -> if ( P <_ p , B , 0 ) = if ( P <_ k , B , 0 ) ) |
| 16 | 13 15 | eqeq12d | |- ( p = k -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) |
| 17 | 16 | imbi2d | |- ( p = k -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) ) |
| 18 | fveq2 | |- ( p = ( k + 1 ) -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) |
|
| 19 | 18 | oveq2d | |- ( p = ( k + 1 ) -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) ) |
| 20 | breq2 | |- ( p = ( k + 1 ) -> ( P <_ p <-> P <_ ( k + 1 ) ) ) |
|
| 21 | 20 | ifbid | |- ( p = ( k + 1 ) -> if ( P <_ p , B , 0 ) = if ( P <_ ( k + 1 ) , B , 0 ) ) |
| 22 | 19 21 | eqeq12d | |- ( p = ( k + 1 ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 23 | 22 | imbi2d | |- ( p = ( k + 1 ) -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 24 | fveq2 | |- ( p = N -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` N ) ) |
|
| 25 | 24 | oveq2d | |- ( p = N -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` N ) ) ) |
| 26 | breq2 | |- ( p = N -> ( P <_ p <-> P <_ N ) ) |
|
| 27 | 26 | ifbid | |- ( p = N -> if ( P <_ p , B , 0 ) = if ( P <_ N , B , 0 ) ) |
| 28 | 25 27 | eqeq12d | |- ( p = N -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) |
| 29 | 28 | imbi2d | |- ( p = N -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) ) |
| 30 | 1z | |- 1 e. ZZ |
|
| 31 | seq1 | |- ( 1 e. ZZ -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) ) |
|
| 32 | 30 31 | ax-mp | |- ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) |
| 33 | 1nn | |- 1 e. NN |
|
| 34 | 1nprm | |- -. 1 e. Prime |
|
| 35 | eleq1 | |- ( n = 1 -> ( n e. Prime <-> 1 e. Prime ) ) |
|
| 36 | 34 35 | mtbiri | |- ( n = 1 -> -. n e. Prime ) |
| 37 | 36 | iffalsed | |- ( n = 1 -> if ( n e. Prime , ( n ^ A ) , 1 ) = 1 ) |
| 38 | 1ex | |- 1 e. _V |
|
| 39 | 37 1 38 | fvmpt | |- ( 1 e. NN -> ( F ` 1 ) = 1 ) |
| 40 | 33 39 | ax-mp | |- ( F ` 1 ) = 1 |
| 41 | 32 40 | eqtri | |- ( seq 1 ( x. , F ) ` 1 ) = 1 |
| 42 | 41 | oveq2i | |- ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = ( P pCnt 1 ) |
| 43 | pc1 | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
|
| 44 | 42 43 | eqtrid | |- ( P e. Prime -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = 0 ) |
| 45 | prmgt1 | |- ( P e. Prime -> 1 < P ) |
|
| 46 | 1re | |- 1 e. RR |
|
| 47 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 48 | eluzelre | |- ( P e. ( ZZ>= ` 2 ) -> P e. RR ) |
|
| 49 | 47 48 | syl | |- ( P e. Prime -> P e. RR ) |
| 50 | ltnle | |- ( ( 1 e. RR /\ P e. RR ) -> ( 1 < P <-> -. P <_ 1 ) ) |
|
| 51 | 46 49 50 | sylancr | |- ( P e. Prime -> ( 1 < P <-> -. P <_ 1 ) ) |
| 52 | 45 51 | mpbid | |- ( P e. Prime -> -. P <_ 1 ) |
| 53 | 52 | iffalsed | |- ( P e. Prime -> if ( P <_ 1 , B , 0 ) = 0 ) |
| 54 | 44 53 | eqtr4d | |- ( P e. Prime -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) |
| 55 | 4 54 | syl | |- ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) |
| 56 | 4 | adantr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P e. Prime ) |
| 57 | 1 2 | pcmptcl | |- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
| 58 | 57 | simpld | |- ( ph -> F : NN --> NN ) |
| 59 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 60 | ffvelcdm | |- ( ( F : NN --> NN /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
|
| 61 | 58 59 60 | syl2an | |- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 62 | 61 | adantrr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 63 | 56 62 | pccld | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) e. NN0 ) |
| 64 | 63 | nn0cnd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) e. CC ) |
| 65 | 64 | addlidd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( P pCnt ( F ` ( k + 1 ) ) ) ) |
| 66 | 59 | ad2antrl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) e. NN ) |
| 67 | ovex | |- ( n ^ A ) e. _V |
|
| 68 | 67 38 | ifex | |- if ( n e. Prime , ( n ^ A ) , 1 ) e. _V |
| 69 | 68 | csbex | |- [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V |
| 70 | 1 | fvmpts | |- ( ( ( k + 1 ) e. NN /\ [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V ) -> ( F ` ( k + 1 ) ) = [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) ) |
| 71 | ovex | |- ( k + 1 ) e. _V |
|
| 72 | nfv | |- F/ n ( k + 1 ) e. Prime |
|
| 73 | nfcv | |- F/_ n ( k + 1 ) |
|
| 74 | nfcv | |- F/_ n ^ |
|
| 75 | nfcsb1v | |- F/_ n [_ ( k + 1 ) / n ]_ A |
|
| 76 | 73 74 75 | nfov | |- F/_ n ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) |
| 77 | nfcv | |- F/_ n 1 |
|
| 78 | 72 76 77 | nfif | |- F/_ n if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) |
| 79 | eleq1 | |- ( n = ( k + 1 ) -> ( n e. Prime <-> ( k + 1 ) e. Prime ) ) |
|
| 80 | id | |- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
|
| 81 | csbeq1a | |- ( n = ( k + 1 ) -> A = [_ ( k + 1 ) / n ]_ A ) |
|
| 82 | 80 81 | oveq12d | |- ( n = ( k + 1 ) -> ( n ^ A ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 83 | 79 82 | ifbieq1d | |- ( n = ( k + 1 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 84 | 71 78 83 | csbief | |- [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) |
| 85 | 70 84 | eqtrdi | |- ( ( ( k + 1 ) e. NN /\ [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 86 | 66 69 85 | sylancl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 87 | simprr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) = P ) |
|
| 88 | 87 56 | eqeltrd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) e. Prime ) |
| 89 | 88 | iftrued | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 90 | 87 | csbeq1d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ ( k + 1 ) / n ]_ A = [_ P / n ]_ A ) |
| 91 | nfcvd | |- ( P e. Prime -> F/_ n B ) |
|
| 92 | 91 5 | csbiegf | |- ( P e. Prime -> [_ P / n ]_ A = B ) |
| 93 | 56 92 | syl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ P / n ]_ A = B ) |
| 94 | 90 93 | eqtrd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ ( k + 1 ) / n ]_ A = B ) |
| 95 | 87 94 | oveq12d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) = ( P ^ B ) ) |
| 96 | 86 89 95 | 3eqtrd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) = ( P ^ B ) ) |
| 97 | 96 | oveq2d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = ( P pCnt ( P ^ B ) ) ) |
| 98 | 5 | eleq1d | |- ( n = P -> ( A e. NN0 <-> B e. NN0 ) ) |
| 99 | 98 | rspcv | |- ( P e. Prime -> ( A. n e. Prime A e. NN0 -> B e. NN0 ) ) |
| 100 | 4 2 99 | sylc | |- ( ph -> B e. NN0 ) |
| 101 | 100 | adantr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> B e. NN0 ) |
| 102 | pcidlem | |- ( ( P e. Prime /\ B e. NN0 ) -> ( P pCnt ( P ^ B ) ) = B ) |
|
| 103 | 56 101 102 | syl2anc | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( P ^ B ) ) = B ) |
| 104 | 65 97 103 | 3eqtrd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) |
| 105 | oveq1 | |- ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
|
| 106 | 105 | eqeq1d | |- ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B <-> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
| 107 | 104 106 | syl5ibrcom | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
| 108 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 109 | 108 | ad2antrl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> k e. RR ) |
| 110 | ltp1 | |- ( k e. RR -> k < ( k + 1 ) ) |
|
| 111 | peano2re | |- ( k e. RR -> ( k + 1 ) e. RR ) |
|
| 112 | ltnle | |- ( ( k e. RR /\ ( k + 1 ) e. RR ) -> ( k < ( k + 1 ) <-> -. ( k + 1 ) <_ k ) ) |
|
| 113 | 111 112 | mpdan | |- ( k e. RR -> ( k < ( k + 1 ) <-> -. ( k + 1 ) <_ k ) ) |
| 114 | 110 113 | mpbid | |- ( k e. RR -> -. ( k + 1 ) <_ k ) |
| 115 | 109 114 | syl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> -. ( k + 1 ) <_ k ) |
| 116 | 87 | breq1d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( k + 1 ) <_ k <-> P <_ k ) ) |
| 117 | 115 116 | mtbid | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> -. P <_ k ) |
| 118 | 117 | iffalsed | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( P <_ k , B , 0 ) = 0 ) |
| 119 | 118 | eqeq2d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 ) ) |
| 120 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 121 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 122 | 120 121 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 123 | seqp1 | |- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
|
| 124 | 122 123 | syl | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
| 125 | 124 | oveq2d | |- ( ( ph /\ k e. NN ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) ) |
| 126 | 4 | adantr | |- ( ( ph /\ k e. NN ) -> P e. Prime ) |
| 127 | 57 | simprd | |- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
| 128 | 127 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
| 129 | nnz | |- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) e. ZZ ) |
|
| 130 | nnne0 | |- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) =/= 0 ) |
|
| 131 | 129 130 | jca | |- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) ) |
| 132 | 128 131 | syl | |- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) ) |
| 133 | nnz | |- ( ( F ` ( k + 1 ) ) e. NN -> ( F ` ( k + 1 ) ) e. ZZ ) |
|
| 134 | nnne0 | |- ( ( F ` ( k + 1 ) ) e. NN -> ( F ` ( k + 1 ) ) =/= 0 ) |
|
| 135 | 133 134 | jca | |- ( ( F ` ( k + 1 ) ) e. NN -> ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) |
| 136 | 61 135 | syl | |- ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) |
| 137 | pcmul | |- ( ( P e. Prime /\ ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) /\ ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) -> ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
|
| 138 | 126 132 136 137 | syl3anc | |- ( ( ph /\ k e. NN ) -> ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 139 | 125 138 | eqtrd | |- ( ( ph /\ k e. NN ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 140 | 139 | adantrr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 141 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 142 | 4 141 | syl | |- ( ph -> P e. NN ) |
| 143 | 142 | nnred | |- ( ph -> P e. RR ) |
| 144 | 143 | adantr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P e. RR ) |
| 145 | 144 | leidd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P <_ P ) |
| 146 | 145 87 | breqtrrd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P <_ ( k + 1 ) ) |
| 147 | 146 | iftrued | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( P <_ ( k + 1 ) , B , 0 ) = B ) |
| 148 | 140 147 | eqeq12d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) <-> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
| 149 | 107 119 148 | 3imtr4d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 150 | 149 | expr | |- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) = P -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 151 | 139 | adantrr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
| 152 | simplrr | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( k + 1 ) =/= P ) |
|
| 153 | 152 | necomd | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> P =/= ( k + 1 ) ) |
| 154 | 4 | ad2antrr | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> P e. Prime ) |
| 155 | simpr | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( k + 1 ) e. Prime ) |
|
| 156 | 2 | ad2antrr | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> A. n e. Prime A e. NN0 ) |
| 157 | 75 | nfel1 | |- F/ n [_ ( k + 1 ) / n ]_ A e. NN0 |
| 158 | 81 | eleq1d | |- ( n = ( k + 1 ) -> ( A e. NN0 <-> [_ ( k + 1 ) / n ]_ A e. NN0 ) ) |
| 159 | 157 158 | rspc | |- ( ( k + 1 ) e. Prime -> ( A. n e. Prime A e. NN0 -> [_ ( k + 1 ) / n ]_ A e. NN0 ) ) |
| 160 | 155 156 159 | sylc | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> [_ ( k + 1 ) / n ]_ A e. NN0 ) |
| 161 | prmdvdsexpr | |- ( ( P e. Prime /\ ( k + 1 ) e. Prime /\ [_ ( k + 1 ) / n ]_ A e. NN0 ) -> ( P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) -> P = ( k + 1 ) ) ) |
|
| 162 | 154 155 160 161 | syl3anc | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) -> P = ( k + 1 ) ) ) |
| 163 | 162 | necon3ad | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P =/= ( k + 1 ) -> -. P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) ) |
| 164 | 153 163 | mpd | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> -. P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 165 | 59 | ad2antrl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) e. NN ) |
| 166 | 165 69 85 | sylancl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
| 167 | iftrue | |- ( ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
|
| 168 | 166 167 | sylan9eq | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
| 169 | 168 | breq2d | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P || ( F ` ( k + 1 ) ) <-> P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) ) |
| 170 | 164 169 | mtbird | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> -. P || ( F ` ( k + 1 ) ) ) |
| 171 | 58 | adantr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> F : NN --> NN ) |
| 172 | 171 165 60 | syl2anc | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 173 | 172 | adantr | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) e. NN ) |
| 174 | pceq0 | |- ( ( P e. Prime /\ ( F ` ( k + 1 ) ) e. NN ) -> ( ( P pCnt ( F ` ( k + 1 ) ) ) = 0 <-> -. P || ( F ` ( k + 1 ) ) ) ) |
|
| 175 | 154 173 174 | syl2anc | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( ( P pCnt ( F ` ( k + 1 ) ) ) = 0 <-> -. P || ( F ` ( k + 1 ) ) ) ) |
| 176 | 170 175 | mpbird | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
| 177 | iffalse | |- ( -. ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = 1 ) |
|
| 178 | 166 177 | sylan9eq | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = 1 ) |
| 179 | 178 | oveq2d | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = ( P pCnt 1 ) ) |
| 180 | 4 43 | syl | |- ( ph -> ( P pCnt 1 ) = 0 ) |
| 181 | 180 | ad2antrr | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt 1 ) = 0 ) |
| 182 | 179 181 | eqtrd | |- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
| 183 | 176 182 | pm2.61dan | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
| 184 | 183 | oveq2d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + 0 ) ) |
| 185 | 4 | adantr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. Prime ) |
| 186 | 128 | adantrr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
| 187 | 185 186 | pccld | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) e. NN0 ) |
| 188 | 187 | nn0cnd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) e. CC ) |
| 189 | 188 | addridd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + 0 ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
| 190 | 151 184 189 | 3eqtrd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
| 191 | 142 | adantr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. NN ) |
| 192 | 191 | nnred | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. RR ) |
| 193 | 165 | nnred | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) e. RR ) |
| 194 | 192 193 | ltlend | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P < ( k + 1 ) <-> ( P <_ ( k + 1 ) /\ ( k + 1 ) =/= P ) ) ) |
| 195 | simprl | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> k e. NN ) |
|
| 196 | nnleltp1 | |- ( ( P e. NN /\ k e. NN ) -> ( P <_ k <-> P < ( k + 1 ) ) ) |
|
| 197 | 191 195 196 | syl2anc | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ k <-> P < ( k + 1 ) ) ) |
| 198 | simprr | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) =/= P ) |
|
| 199 | 198 | biantrud | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ ( k + 1 ) <-> ( P <_ ( k + 1 ) /\ ( k + 1 ) =/= P ) ) ) |
| 200 | 194 197 199 | 3bitr4rd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ ( k + 1 ) <-> P <_ k ) ) |
| 201 | 200 | ifbid | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> if ( P <_ ( k + 1 ) , B , 0 ) = if ( P <_ k , B , 0 ) ) |
| 202 | 190 201 | eqeq12d | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) |
| 203 | 202 | biimprd | |- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 204 | 203 | expr | |- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) =/= P -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 205 | 150 204 | pm2.61dne | |- ( ( ph /\ k e. NN ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
| 206 | 205 | expcom | |- ( k e. NN -> ( ph -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 207 | 206 | a2d | |- ( k e. NN -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) -> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
| 208 | 11 17 23 29 55 207 | nnind | |- ( N e. NN -> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) |
| 209 | 3 208 | mpcom | |- ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) |