This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are zero powers of a prime P in N iff P does not divide N . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pceq0 | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) = 0 ↔ ¬ 𝑃 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcelnn | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) | |
| 2 | pccl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) | |
| 3 | nnne0 | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ → ( 𝑃 pCnt 𝑁 ) ≠ 0 ) | |
| 4 | elnn0 | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ↔ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ∨ ( 𝑃 pCnt 𝑁 ) = 0 ) ) | |
| 5 | 4 | biimpi | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ∨ ( 𝑃 pCnt 𝑁 ) = 0 ) ) |
| 6 | 5 | ord | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ¬ ( 𝑃 pCnt 𝑁 ) ∈ ℕ → ( 𝑃 pCnt 𝑁 ) = 0 ) ) |
| 7 | 6 | necon1ad | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ( 𝑃 pCnt 𝑁 ) ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) ) |
| 8 | 3 7 | impbid2 | ⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ ( 𝑃 pCnt 𝑁 ) ≠ 0 ) ) |
| 9 | 2 8 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ ( 𝑃 pCnt 𝑁 ) ≠ 0 ) ) |
| 10 | 1 9 | bitr3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑃 pCnt 𝑁 ) ≠ 0 ) ) |
| 11 | 10 | necon2bbid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) = 0 ↔ ¬ 𝑃 ∥ 𝑁 ) ) |