This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrbnd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 2 | sstr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐴 ⊆ ℝ* ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ* ) |
| 4 | supxrcl | ⊢ ( 𝐴 ⊆ ℝ* → sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ) | |
| 5 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 6 | xrltne | ⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → +∞ ≠ sup ( 𝐴 , ℝ* , < ) ) | |
| 7 | 5 6 | mp3an2 | ⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → +∞ ≠ sup ( 𝐴 , ℝ* , < ) ) |
| 8 | 7 | necomd | ⊢ ( ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) |
| 9 | 8 | ex | ⊢ ( sup ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( sup ( 𝐴 , ℝ* , < ) < +∞ → sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 10 | 4 9 | syl | ⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) < +∞ → sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 11 | supxrunb2 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) | |
| 12 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) | |
| 13 | 12 | adantlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 14 | rexr | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 16 | xrlenlt | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦 ) ) | |
| 17 | 16 | con2bid | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
| 18 | 13 15 17 | syl2anc | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
| 19 | 18 | rexbidva | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ) ) |
| 20 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 21 | 19 20 | bitrdi | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 22 | 21 | ralbidva | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 23 | 11 22 | bitr3d | ⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 24 | ralnex | ⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
| 25 | 23 24 | bitrdi | ⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) = +∞ ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 26 | 25 | necon2abid | ⊢ ( 𝐴 ⊆ ℝ* → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) ≠ +∞ ) ) |
| 27 | 10 26 | sylibrd | ⊢ ( 𝐴 ⊆ ℝ* → ( sup ( 𝐴 , ℝ* , < ) < +∞ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 28 | 27 | imp | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 29 | 3 28 | sylan | ⊢ ( ( 𝐴 ⊆ ℝ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 30 | 29 | 3adant2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 31 | supxrre | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) = sup ( 𝐴 , ℝ , < ) ) | |
| 32 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 33 | 31 32 | eqeltrd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
| 34 | 30 33 | syld3an3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup ( 𝐴 , ℝ* , < ) < +∞ ) → sup ( 𝐴 , ℝ* , < ) ∈ ℝ ) |