This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovolun . (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolun.a | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) | |
| ovolun.b | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | ||
| ovolun.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| Assertion | ovolunlem2 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolun.a | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) | |
| 2 | ovolun.b | ⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | |
| 3 | ovolun.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | 1 | simpld | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 5 | 1 | simprd | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 6 | 3 | rphalfcld | ⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ+ ) |
| 7 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) | |
| 8 | 7 | ovolgelb | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐶 / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ) |
| 9 | 4 5 6 8 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ) |
| 10 | 2 | simpld | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 11 | 2 | simprd | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
| 12 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) | |
| 13 | 12 | ovolgelb | ⊢ ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐶 / 2 ) ∈ ℝ+ ) → ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
| 14 | 10 11 6 13 | syl3anc | ⊢ ( 𝜑 → ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
| 15 | reeanv | ⊢ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) | |
| 16 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
| 17 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
| 18 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝐶 ∈ ℝ+ ) |
| 19 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) ) ) | |
| 20 | simp2l | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 21 | simp3ll | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) | |
| 22 | simp3lr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) | |
| 23 | simp2r | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 24 | simp3rl | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ) | |
| 25 | simp3rr | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) | |
| 26 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) | |
| 27 | 16 17 18 7 12 19 20 21 22 23 24 25 26 | ovolunlem1 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
| 28 | 27 | 3exp | ⊢ ( 𝜑 → ( ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) ) |
| 29 | 28 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
| 30 | 15 29 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
| 31 | 9 14 30 | mp2and | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |